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Maximum Likelihood Doppler Frequency Estimation
Under Decorrelation Noise for Quantifying Flow in

Optical Coherence Tomography
Aaron C. Chan, Student Member, IEEE, Vivek J. Srinivasan*, and Edmund Y. Lam, Senior Member, IEEE

Abstract—Recent hardware advances in optical coherence to-
mography (OCT) have led to ever higher A-scan rates. However,
the estimation of blood flow axial velocities is limited by the
presence and type of noise. Higher acquisition rates alone do not
necessarily enable precise quantification of Doppler velocities,
particularly if the estimator is suboptimal. In previous work, we
have shown that the Kasai autocorrelation estimator is statistically
suboptimal under conditions of additive white Gaussian noise. In
addition, for practical OCT measurements of flow, decorrelation
noise affects Doppler frequency estimation by broadening the
signal spectrum. Here, we derive a general maximum likelihood
estimator (MLE) for Doppler frequency estimation that takes into
account additive white noise as well as signal decorrelation. We
compare the decorrelation MLE with existing techniques using
simulated and flow phantom data and find that it has better per-
formance, achieving the Cramer-Rao lower bound. By making an
approximation, we also provide an interpretation of this method
in the Fourier domain. We anticipate that this estimator will be
particularly suited for estimating blood flow in in vivo scenarios.

Index Terms—Circulant matrices, Cramer-Rao bounds,
Doppler optical coherence tomography, frequency estimation,
maximum likelihood estimation, Toeplitz matrices.

I. INTRODUCTION

A RECENT trend in optical coherence tomography (OCT)
hardware development is to increase the A-scan acquisi-

tion rate [1], [2], making new in vivo applications possible [3],
[4]. However, the increase in speed does not necessarily enhance
the capabilities of functional OCT imaging. For example, the
minimum detectable Doppler shift and blood velocity are not
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only determined by the sampling rate, but also by the noise sta-
tistics and the estimation method [5]. Estimation performance is
determined by themean squared error (MSE) of the estimator. In
this work, we develop a general maximum likelihood estimator
for estimating the axial blood flow velocity via the Doppler fre-
quency [5] that takes into account spectral broadening due to
decorrelation [6], in addition to the effects of additive white
noise.
In our previous work, we examined the statistical perfor-

mance of frequency estimators [5], [7], [8] for use in Doppler
OCT [9]–[11], under additive noise assumptions. Under
additive white noise conditions, the Kasai estimator [7] is
statistically suboptimal, but can still perform adequately in the
presence of moderate amounts of decorrelation noise [12]. The
additive white Gaussian noise (AWGN) maximum likelihood
estimator (MLE), on the other hand, is statistically optimal for
additive white noise conditions and achieves the Cramer-Rao
lower bound (CRLB) for moderate SNRs and data lengths.
However, even small amounts of decorrelation noise can cause
its performance to be worse than that of the Kasai estimator.
Hence, the AWGN MLE is only suitable when additive noise
dominates decorrelation over the total acquisition time [13].
The effects of decorrelation are expected to increase with

acquisition time, particularly when imaging vasculature with
blood flow [12]. It is desirable to have an MLE that takes this
into account, given that the Kasai estimator is nonparametric
and statistically suboptimal [5]. In this paper, we extend our
statistical analysis to derive a decorrelation noise MLE that per-
forms better than both the Kasai estimator and AWGN MLE
under more general noise conditions.
While decorrelation based techniques such as speckle vari-

ance and phase variance are used for the detection of microvas-
culature, these techniques do not provide quantification of flow
[14]–[16]. The estimator we derive incorporates a model of the
decorrelation noise [14], to design a better estimator of axial
blood velocity, enabling the quantification of slow axial veloc-
ities and flow. We compare the decorrelation MLE with the
AWGN MLE and the Kasai estimator using simulated data and
red blood cell flow phantom data.

II. ADDITIVE WHITE GAUSSIAN NOISE

A. Signal Model and AWGN Maximum Likelihood Estimator

Shot noise affects all types of optical measurements, and
hence our Doppler estimators must take this into account. Here,
we outline the derivation of the AWGN MLE, as presented in
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TABLE I
SOME FREQUENTLY USED SYMBOLS

our earlier work [5]. If is a single measured datum at time
instance , see Table I, we represent the Doppler OCT data for
measuring flow velocity as [5]

(1)

Here, is the unknown complex constant reflectance
with its associated phase, and . The time betweenmea-
surements is , where is the total acquisition time
and is the total number of samples. The additive noise is given
by , which is circularly symmetric, complex, Gaussian. That
is, each of the real and imaginary parts of are independent
and identically Gaussian distributed with zero mean and equal
variance, .
From this model, as expressed in (1), we can calculate the

likelihood of obtaining a measured signal, . We
showed that the log-likelihood function is given by

(2)

With some additional manipulation [5], it can be shown that
maximizing the likelihood function is equivalent to choosing the
values of the Doppler frequency, , and reflectance phase, ,
that maximizes the real part of the inverse DFT of the (complex
conjugate of the) signal [5]

(3)

As is chosen to make the expression in curly brackets
real, finding is equivalent to finding the frequency
corresponding to the peak of the power spectral density, as
illustrated in Fig. 1. This method is also the basis for the joint
spectral and time domain OCT (STdOCT) method of Szkul-
mowski and Szkulmowska [9], [10]. As the AWGN MLE is
parametric, provided that the acquired signal is well described
by the noise model, it is asymptotically efficient and unbiased
[17]. However, its performance may deteriorate in the presence
of outliers or deviations from model assumptions, such as in
the presence of decorrelation noise, as shown in [5].

Fig. 1. AWGN MLE for Doppler frequency is the location of the peak of the
PSD [5]. Compare this with the decorrelation MLE (Fig. 7).

Fig. 2. Schematic diagram of OCT measurement of blood flow. The axial ve-
locity of the red blood cells is measured by the Doppler shift. The changing
configuration of scatterers over time causes decorrelation. (b) Cross section and
(c) profile of flow phantom experimental set-up. The tubing was tilted at ap-
proximately 10 to the horizontal. A-lines were taken down the middle of the
tubing.

B. AWGN Cramer-Rao Lower Bound

The theoretical best performance of an unbiased estimator
is given by the CRLB. Hence an understanding of this bound
would help one to understand the fundamental statistical limits
of estimation under a certain type of noise. We showed in [5]
that the AWGN MLE achieves the CRLB for realistic SNRs in
OCT. The CRLB for an estimator assuming AWGN is given by
[5]

(4)

For large , the CRLB can be approximated as

(5)

Here the CRLB, for a large number of samples , is inversely
proportional to . It is also inversely proportional to the SNR,

, and inversely proportional to the square of the total
acquisition time . By assuming a constant rate of detected
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photons (power), the shot-noise limited SNR is proportional to
. Under these conditions

(6)

Thus, in this limit, the CRLB has the intuitive property of being
inversely proportional to the cube of the total acquisition time.
As the total number of photons detected is proportional to ,
an additional factor of arises because the variance of the
spectrum is proportional to . More importantly for large
, the CRLB becomes independent of . As the MLE variance

approaches the CRLB asymptotically, we can infer that for suf-
ficiently large , the MLE variance also becomes independent
of sampling rate.
We argued that the minimum detectable Doppler shift is re-

lated to estimator standard deviation [5] for an unbiased esti-
mator. The minimum estimator standard deviation is given by
the square root of the CRLB

(7)

We conclude that under conditions of AWGN, simply increasing
the acquisition rate, , does not reduce the minimum mea-
surable Doppler shift. According to theory, increasing the SNR
and increasing the total acquisition time improve the minimum
resolvable Doppler shift. However, in reality, it is known that
increasing the acquisition time increases the effect of decorre-
lation noise [5], [18].

III. KASAI ESTIMATOR

Kasai derived an estimator [7] to calculate Doppler shifts
of continuous wave ultrasound signals. While derived for pro-
cessing analog signals, it is often utilized in its discrete form
for OCT. The phase, , of the estimated lag one autocorrelation
function acts as an estimate of the phase change during this time
interval. From this one obtains an estimate for the Doppler fre-
quency, given by

(8)

Here, is the signal acquired at the th time instance, , its
phase, and , the time between measurements. We have dis-
cussed in [5] that as a nonparametric estimator, it is not opti-
mized for any specific noise model [12].

IV. DECORRELATION NOISE

A. Decorrelation Noise and Signal Model

It is well known that in vivo OCT signals contain decorre-
lation noise [12], and this needs to be accounted for in any
effective parametric estimation scheme [19]. Consider a sta-
tionary OCT beam such that a voxel is imaging a blood vessel.
At any time instant, there are scatterers randomly distributed

Fig. 3. Doppler shifts shift the PSD, whereas decorrelation broadens the PSD
[20]. For high flows rates at angles nearly perpendicular to the OCT beam, one
would observe small Doppler shifts, but large spectral broadening. Hence, there
is a need for a decorrelation noise MLE.

within the voxel. As the scatters move into and out of a voxel,
the configuration of scatterers changes, and the signal “decorre-
lates,” as illustrated in Fig. 2. This corresponds to a relaxation
of the auto-covariance function, and leads to the broadening of
the power spectral density (PSD), as shown in Fig. 3. We sim-
ulated decorrelation using Doppler shifted correlated random
variables. Hence, the signal is obtained by modifying the signal
from (1) to include a (unitless) multiplicative term

(9)

where is a correlated complex Gaussian random variable
with a known auto-covariance matrix, , and unit amplitude.
The covariance matrix is real and Toeplitz symmetric, with
the first row equal to the auto-covariance function. Its half-
width, , is the coherence time of the signal. As Fig. 4 shows,
the coherence time decreases as the speed of the red blood cell
flow phantom increases. To model this spectral broadening in
simulation, the auto-covariance matrix may be set to be an im-
plicit function of . A signal with a long coherence time has
little decorrelation noise, whereas a signal with a short coher-
ence time has a high level of decorrelation noise [18].
To generate a series of correlated random variables

, we multiply an uncorrelated series of i.i.d
(white) Gaussian random variables
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Fig. 4. When power spectra are computed from flow oriented at an angle to the OCT beam at increasing flow rates, the Doppler shift increases with the amount
of decorrelation. This figure shows the average PSDs of data collected from rat blood flow phantoms. The averages were taken from 100 repetitions, with a DFT
data length of 1024. A cylindrical tubing of diameter 0.58 mm, which was tilted at an angle of elevation of approximately 10 , was used. A flow rate of 8 ml.hr
corresponds to a average flow speed of roughly 8.4 mm.s , and an average axial velocity of 1.46 mm.s . The coherence time, estimated from the degree of PSD
broadening, for RBC flow ranged from roughly 0.44 ms for 2.0 ml.hr to roughly 0.15 ms for 8 ml.hr . This corresponds to a time interval of approximately

to for a 47 kHz spectral domain OCT system.

Fig. 5. Data simulated from the signal model in (9) shows the same features of Doppler shift and PSD broadening due to decorrelation as Fig. 4. The coherence
time was set to be inversely proportional to the Doppler shift, so that PSD widens linearly with Doppler shift as observed experimentally in Fig. 6 and
Table II [16], [21]. This figure shows the average PSDs from 100 sets of data simulated from the signal model (9), using a Gaussian covariance matrix, assuming
an acquisition time of around 22 ms, and an acquisition rate of 47.0 kHz. The signal to white noise ratio was set to 6 dB. The same data length of 1024 was used
for comparing with the OCT signals acquired from RBC flow phantoms.

Fig. 6. There is a linear relationship between the broadening of the PSD and
the red blood cell flow rate [21], [22].

by the Cholesky decomposition, , of the covariance matrix
. That is, .

As complex white noise is statistically unchanged under
Doppler shifts (it remains white noise), we simplify the ex-
pression, (9), by dropping the term and incorporating
the effects of white noise into . This can be achieved by
modifying the covariance matrix such that all the off diag-
onal terms are reduced equally by multiplying by . Here,

, where the signal-to-white-noise ratio
(SWNR) is defined by from (1).

B. Exponential Weighted Covariance Matrix

To gain some insight into the properties of this model, we
consider the simple example of an exponential covariance ma-
trix. Though there is experimental evidence to suggest that a

Gaussian covariance matrix better models actual OCT signals
[16], as seen in Figs. 4 and 5, this example is computationally
more tractable. For a function discretized with step , the ex-
ponential covariance matrix is given by

(10)

For example, a 4 4 covariance matrix would have the form

(11)

where . The inverse of the covariance matrix
is tri-diagonal

(12)

which simplifies calculations in any optimization procedure,
and the calculations for the CRLB below. For a very short co-
herence time , this reduces to .
All covariance matrices of weakly stationary stochastic pro-

cesses are Toeplitz [23], [24]. To gain insight into the nature of
this estimator, it is convenient to approximate the Toeplitz ma-
trices by circulant matrices [25]–[28]. All circulant matrices are
diagonalized by the DFT matrix (that is, their eigenvectors are
the Fourier bases), and their eigenvalues are given by the DFT
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Fig. 7. Circulant approximated decorrelation MLE for Doppler frequency is
found by finding the minimum of the convolution of the PSD with the diagonal
elements of , which is a well centered at the origin. The width of the
well is determined by the coherence time. The longer the coherence time the
narrower the well. Hence, in the limit where the coherence time is much longer
than the acquisition time, the decorrelation MLE performs a similar operation
to the AWGN MLE, for the empirically encountered Gaussian or exponential
auto-covariance matrices. That is, both the estimators search for the peak of the
PSD. A curve fitting or smoothing operation is implicitly incorporated in the
decorrelation MLE.

TABLE II
COHERENCE TIMES FOR RED BLOOD CELL FLOW PHANTOM

of the first row of the matrix. The inverses of circulant matrices
are also circulant.
We construct the circulant approximation, of the

Toeplitz covariance matrix following the example of Gray [26],
by setting each row equal to its circularly shifted previous row.
This has been proven to be asymptotically equivalent (as the
matrix size gets larger) to the Toeplitz covariance matrix in the
weak (Hilbert-Schmidt) norm. This approximation is valid, with
negligible error for a sufficiently large matrix, when the off di-
agonal elements are close to zero. In practice, Sherman [29] has
shown that for a matrix of size 64 64, the error,

, would be small if the signal is an AR(1) process (cor-
responding to an exponential covariance matrix). Under this ap-
proximation, the eigenvectors and eigenvalues are asymptoti-
cally equivalent [25] to those of the unapproximated covariance
matrix. For our decorrelation MLE, the approximation to the
covariance matrix would be valid when the coherence time is
short, and the matrix is large.
We shall make use of these properties to simplify the decor-

relation MLE. This not only reduces the computational com-
plexity, but also provides an intuitive interpretation of the MLE,
as show in Fig. 7.
It should be noted that the circulant approximation becomes

less accurate for longer coherence times and shorter data lengths
[26], as the elements of the covariancematrix in the top right and
bottom left are required to be close to zero for the approximation
to be accurate.

Fig. 8. Invertibility of Gaussian covariance matrices. The top left region
(black) of the figure shows where the inverse of the covariance matrices
exists. While the matrices are positive definite, for larger matrices, and longer
coherence times, the determinant of the matrix approaches zero and becomes
numerically noninvertible. This problem can be eliminated by increasing the
amount of white noise in the model, which would increase the value of the
main diagonal elements relative to off-diagonal elements.

In addition, it should also be noted that when computing the
unapproximated decorrelation MLE, in the case of a long coher-
ence time relative to the acquisition time, Gaussian covariance
matrices become noninvertible, due to numerical issues caused
the early truncation of the covariance function. While the ma-
trix may still be positive definite, the determinant of the matrix
approaches zero, as exhibited in Fig. 8.

C. Gaussian Weighted Covariance Matrix

While the exponential-weighted covariance matrix is easier
to deal with mathematically, as Fig. 4 shows, actual OCT sig-
nals show Gaussian shaped decorrelation [16], [30], [31]. This
is due to the Gaussian beam profile in the transverse direction
and that the voxel is typically spectrally shaped in processing to
be roughly Gaussian in the axial direction

(13)

In our simulations, we have assumed a Gaussian-weighted co-
variance matrix.

D. Decorrelation Noise MLE in Temporal Domain

We define the vector as the signal vector multiplied by a
complex exponential of frequency

... (14)

By setting , the likelihood function is given by [13]

(15)
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Therefore the multiplicative decorrelation MLE for is

(16)

where is the Hermitian conjugate. Maximizing the log-like-
lihood is equivalent to minimizing the quadratic form

with respect to . This can be com-
puted using standard optimization algorithms [32]. Note that
here is general. It may be Gaussian weighted, if this is known
a priori [16], or it may be estimated from data.

E. Decorrelation Noise CRLB

Assuming that additive noise is negligible, the log-likelihood
function can also be written as

(17)

We assume that is independent from, or is merely an implicit
function of, . From this we can obtain the Fisher information
[5] from

(18)

and the CRLB from

(19)

For the numerical evaluation of the maximum likelihood using
a gradient-based optimization, one may evaluate the gradient by

(20)

To derive the Fisher information, (18)

(21)

where

...
...
. . .

...
(22)

Using the properties of the trace operation, the expression (21)
can be written as

(23)

Hence, the Fisher information is given by

(24)

This expression can be further simplified, using the result
, to

(25)

Hence,

(26)

If one considers the case where

...
...

. . .
...

(27)

the signal model would correspond to the case with AWGN,
with a SWNR of . Note that is circulant. Fig. 9 con-
firms that in this case, the decorrelation noise CRLB reduces to
that of the AWGN CRLB for sufficiently large SWNRs and .
This suggests that the decorrelation MLE is a more general esti-
mation framework that incorporates the case for AWGN. It can
be shown that using this covariance matrix, the decorrelation
MLE [(16)] is mathematically equivalent to the AWGN MLE.
The argument to be maximized is equal to

(28)

where , the diagonal terms of are given by
, and the off-diagonal terms of are given by . It can
be shown, using the property that the eigenvalues of a circulant
matrix are equal to the DFT of its first row, and that the eigen-
values of the inverse of a matrix are equal to the inverse of the
eigenvalues of a matrix

(29)

and

(30)

Both terms are greater than zero as . As only the
second term of (28) is a function of , maximizing
is equivalent to finding that maximizes the PSD. Therefore,
although the likelihood functions are computed in different
ways, the decorrelation MLE under AWGN assumptions per-
forms a mathematically equivalent operation to the AWGN
MLE [(3)].
If the covariance matrix is function of , and is unknown,

the parameters to be estimated are given by the vector,
, and the Fisher information matrix is given by

(31)
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Fig. 9. When computing the CRLB for a signal assuming AWGN and no decor-
relation, the values as computed from the decorrelation noise model [(26)] and
the AWGN model [(4)] are in agreement. To use the decorrelation noise model
CRLB, we assume a covariance matrix as shown in (27) to model AWGN. Here
we set and s. These values are in agreement with the
values as computed from the AWGN model [(4)] for experimentally encoun-
tered data lengths, , and SWNRs. It is possible that numerical artifacts occur
for low SWNRs, as tends to identity and the denominator in (26) tends to
zero. CRLB as computed from the decorrelation noise model [(26)] then devi-
ates to the upside.

The CRLB for the estimator vector is then given by

(32)

where is the covariance matrix of the estimator vector . As
the left hand side is positive semi-definite, the CRLB for the
variance of each individual estimator is given by

(33)

Taking the partial derivative of the log-likelihood with respect
to twice gives

(34)

From (20), the off-diagonal terms of the Fisher information ma-
trix are

(35)

as and the trace of three symmetric matrices
multiplied together is equal to the trace of any of its permuta-
tions. Hence, the value of the CRLB is unchanged regardless of
whether needs to be estimated or is known a priori.

F. Interpretation of Decorrelation Noise MLE in Spectral
Domain

By the convolution theorem, multiplying the signal by a com-
plex exponential then taking the DFT is equivalent to shifting
the DFT of the signal by the frequency of the sinusoid in the
spectral domain

(36)

where is the DFT matrix, and is the DFT operation. We also
know that the circulant covariance matrix is diagonalized by
the DFTmatrix. By approximating the Toeplitz auto-covariance
matrix , by a circulant matrix , as defined by Gray [26], (16)
then becomes

(37)

This approximation can be made if the matrices are close in
the weak (Hilbert–Schmidt) norm. As the diagonal entries of

are the entries of the Doppler shifted
PSD, the MLE is equivalent to shifting the spectrum of the data
until its weighted inner product (weighted norm) is minimized.
The weights are determined by the eigenvalues of the approxi-
mated covariance matrix , which are determined by the DFT
of the covariance function. Empirically observed auto-covari-
ance functions are typically monotonically decreasing, such as
in the case of Gaussian auto-covariance functions. Hence, the
eigenvalues are typically ordered from largest in magnitude to
smallest in the first quadrant. Therefore, the diagonals of
typically form a well shape. The spectra are shifted so that the
largest values are closest to the origin, as shown in Fig. 7.
Additive white Gaussian noise can affect the minimization

procedure for either the approximated or unapproximated decor-
relation MLE if it is not appropriately accounted for in the esti-
mation procedure. Therefore, if the power of the white noise is
significant, one would be able to take this into account by uni-
formly reducing the off-diagonal entries in the covariance ma-
trix.
As the eigenvalues of a circulant matrix comprise of the DFT

of the first row of the circulant matrix, the MLE is equivalent to
finding the minimum of the modulo- circular convolution, ,
between the PSD of the signal and the reciprocal of the DFT of
the auto-covariance function, as illustrated in Fig. 7

(38)

For the case of AWGN, given in expression (27), is circulant,
and the circulant decorrelation MLE is mathematically equiva-
lent to the unapproximated decorrelation MLE.
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Fig. 10. Increasing the acquisition rate increases the relative performance of the decorrelation noise MLE relative to the other estimators. The decorrelation MLE
also achieves the CRLB. This figure shows the estimators under simulated multiplicative decorrelation noise and negligible additive noise against data length for a
constant acquisition time. Here, the acquisition time is 1 ms, using 1000 repetitions. A Gaussian weighted covariance matrix was assumed, with a coherence time
of 0.10 ms. Hence, ranged from 5.000 down to 0.3125. Higher acquisition rates lead to improved spectral resolution, which improves the decorrelation MLE
estimation performance. These conditions represent a relatively large amount of decorrelation, as the coherence time is much shorter than the acquisition time. For
short data lengths, the circulant approximated decorrelation MLE has a performance comparable to the unapproximated decorrelation MLE. In addition, for short
data lengths, the CRLB is not valid, due to phase wrapping. The maximum variance for an estimator, taking into account phase wrapping, is given by .
(a) Variances are measured in rad s . (b) Estimator bias in radians per second. When the flows are reversed in simulation, the biases are also reversed.

The general procedure for computing the circulant approxi-
mated decorrelation MLE would be as follows.
• Calculate the signal PSD.
• Estimate the covariance function from data.
• Take the DFT of the covariance function. This would give
the eigenvalues of the circulant approximation of .

• Take the modulo- circular convolution of the PSD
against the reciprocal of the answer obtained above. Find
the minimum of the circular convolution. This is the
approximated decorrelation noise MLE (see Fig. 7).

V. ESTIMATION PERFORMANCE

A. Simulation

We ran simulations to estimate the variances and biases of
the estimators. The analog frequency was assumed to be

rad.s for all simulations, without loss of generality. The
simulated acquisition rates were well above the Nyquist limit
as the lowest simulated acquisition rate was 2 kHz. Moving
scatterers introduce multiplicative decorrelation noise into the
signal. Figs. 10 and 11 show that under the presence of mul-
tiplicative noise, and negligible additive noise, the decorrela-
tion noise MLE has the best performance, and the AWGNMLE
has the worst performance. As the acquisition rate and data
length increases, the relative improvement of the decorrelation
MLE also increases. Similarly, increasing the coherence time
increases the relative performance improvement of the decorre-
lation MLE.
While the circulant approximation reduced the estimation

time, it only shows a marginal improvement of performance
over the Kasai estimator. For short acquisition times and
coherence times, the circulant approximated decorrelation
MLE matched the unapproximated decorrelation MLE. When
assuming a Gaussian covariance matrix, it outperformed the

Kasai estimator, but when assuming an exponential covariance
matrix, the circulant approximated decorrelation MLE either
matched or was slightly worse than the Kasai estimator.

B. Experiment

1) System Description: A 1310 nm spectral/Fourier domain
OCT microscope was used for the imaging of a flow phantom.
The light source consisted of two super-luminescent diodes
combined by using a 50/50 fiber coupler to yield a spectral
bandwidth of approximately 150 nm. The axial (depth) res-
olution was 3.6 m (full-width at half-maximum) and the
transverse resolution was 7.2 m (full-width at half-max-
imum), and the highest imaging speed was 47 000 axial
scans per second, achieved by an InGaAs line scan camera
(Goodrich-Sensors Unlimited, Inc.). The camera sensitivity
was typically set to “medium” to obtain the widest dynamic
range. The high sensitivity setting typically resulted in a signal
saturating the camera pixels. A objective, Mitsutoyu, was
used and the center of tubing was placed into focus.
2) Rat Blood Flow Phantom: We used rat blood, using hep-

arin as the anticoagulant and a syringe pump with a 0.58 mm
inner diameter tubing. The pipe was placed at a 10 incline (ap-
proximately), so that there was an axial velocity which could
be measured as a Doppler shift. As fluid flow in a tube has
a Poiseuille profile, measurements of the Doppler shift were
taken at 0.15 mm from the inner edge of the tubing for consis-
tency when making comparisons. Fig. 13 shows that for a 0.1
ml.hr flow rate, the decorrelation noise MLE has the best per-
formance, whereas the AWGN MLE performed more poorly.
While our code was not optimized for speed, for an approxi-
mate comparison of computational times, the Kasai algorithm
took less than 2 s to generate a 500 100 pixel Doppler map
(Fig. 13), with , while the AWGN MLE algorithm took
16 s, and the decorrelation noise MLE took 584 s. The circulant
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Fig. 11. As the coherence time increases, the relative improvement of performance of the decorrelation MLE against the other estimators also increases. This
figure shows the estimators under simulated multiplicative decorrelation noise and negligible additive noise against coherence time in ms. The acquisition time is
1 ms. As the coherence time of the signal decreases, there is more decorrelation. A Gaussian covariance matrix was assumed. The estimation performance of all
the estimators decrease as the coherence time decreases, as expected, as the signal becomes more “scrambled.” (a) Variances are measured in rad s ,
using 1000 repetitions. (b) Estimator bias in radians per second.

Fig. 12. Absolute value of the normalized covariance function estimated from
0.1 ml hr RBC flow phantom data.

approximated decorrelation noise MLE had a similar computa-
tion time to the Kasai algorithm when tested on simulated data.
This was performed on an Intel Core i7-4800MQ laptop PC run-
ning MATLAB R2013a.
To compute the decorrelation MLE, the auto-covariance ma-

trix was estimated from data, by taking the outer product of a
data vector with itself, and then averaging over 100 instances
(Fig. 12). The DFT length of the AWGN MLE was increased
by 256 times using zero padding, so that the estimator variance
would not be artifactually rounded to zero.
While the decorrelation noise MLE outperforms the Kasai

and AWGN ML estimators, other sources of noise such as gal-
vanometer jitter, thermal drift, and other phase instabilities may
affect estimation. As shown in Table II, even at a flow rate of
0 ml.hr , residual decorrelation due to these noises sources is
present. Variations in the flow rate could also affect the esti-
mation performance and it is known that blood flow in capil-
laries can be highly variable [33]. It is known that when trying
to estimate high axial velocities fringe washout, which induces

an SNR penalty, may occur [34]–[36]. This would need to be
taken into account when making estimates of blood flow. Ad-
ditionally, if one does not sample at a rate above the Nyquist
frequency, phase wrapping would occur. In this paper, however,
we are primarily interested in the sensitivity of our Doppler es-
timates and do not address fringe washout and phase wrapping.

VI. CONCLUSION

In this work, we have derived a multiplicative decorrelation
noise MLE that performs better than both the Kasai and AWGN
ML estimators under simulated data and flow phantom condi-
tions.
We have also shown that using the appropriate covariance

matrix, one can include the effects of additive white noise, and
hence the decorrelation noise MLE is more general than the
AWGN MLE. Under additive noise only, the AWGN CRLB
and decorrelation noise CRLB are asymptotically equivalent
for sufficiently large SNRs. The two ML estimators perform
mathematically equivalent operations under AWGN assump-
tions, even though their likelihood functions are derived in dif-
ferent ways.
We have also provided an intuitive interpretation of the decor-

relation noise MLE in the Fourier domain, making use of the
circulant approximation of Toeplitz matrices. The approxima-
tion results in an estimator that is conceptually similar to the
PSD centroid estimator described earlier [6], [21]. As the auto-
correlation slope at zero time lag is directly related to the PSD
centroid [7], the Kasai estimator and circulant approximation to
the decorrelation noise MLE have comparable performance.
As the creation of color Doppler maps is easily parallelizable,

the decorrelation noise MLE may be implemented on GPUs for
faster computation. In addition, one may further speed up the
algorithm using gradient-based optimization techniques.
However, challenges remain for the decorrelation noise MLE

technique to be applied to in vivo situations. When measuring
flowing blood and scattering tissue in the same voxel, signals
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Fig. 13. Color Doppler Maps of 0.1 ml hr RBC flow (measurements in rad.s ). The acquisition rate was 47 kHz (line scan rate), and the data length was 32
data points. (a) Kasai estimator had a variance of rad s , or 84.8 dB. (b) Decorrelation MLE, where the covariance matrix was estimated from data,
had a variance of rad s , or about 2.45 dB better than the Kasai estimate. (c) AWGN MLE has a variance of rad s , which is 2.60
dB worse in performance compared with the Kasai estimator.

would have a large static scattering component, also known as
clutter [16], [30], [37]. A static term could thus directly be in-
corporated into our model to account for clutter. We anticipate
a better estimation performance with a better understanding of
the scattering properties of RBCs, which would allow more ac-
curate modeling of the underlying biophysical processes. These
advances would enable parametric estimation in a wider range
of biomedical applications, such as imaging of blood flow in the
brain.
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