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PURPOSE. The purpose of this study is to demonstrate three-dimensional (3D) graphing based
on optical coherence tomography (OCT) angiography for characterization of the inner retinal
vascular architecture and determination of its topologic principles.

METHODS. Rat eyes (N ¼ 3) were imaged with a 1300-nm spectral/Fourier domain OCT
microscope. A topologic model of the inner retinal vascular network was obtained from OCT
angiography data using a combination of automated and manually-guided image processing
techniques. Using a resistive network model, with experimentally-quantified flow in major
retinal vessels near the optic nerve head as boundary conditions, theoretical changes in the
distribution of flow induced by vessel dilations were inferred.

RESULTS. A topologically-representative 3D vectorized graph of the inner retinal vasculature,
derived from OCT angiography data, is presented. The laminar and compartmental
connectivity of the vasculature are characterized. In contrast to sparse connectivity between
the superficial vitreal vasculature and capillary plexuses of the inner retina, connectivity
between the two capillary plexus layers is dense. Simulated dilation of single arterioles is
shown to produce both localized and lamina-specific changes in blood flow, while dilation of
capillaries in a given retinal vascular layer is shown to lead to increased total flow in that layer.

CONCLUSIONS. Our graphing and modeling data suggest that vascular architecture enables both
local and lamina-specific control of blood flow in the inner retina. The imaging, graph
analysis, and modeling approach presented here will help provide a detailed characterization
of vascular changes in a variety of retinal diseases, both in experimental preclinical models
and human subjects.
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Inner retinal metabolism requires a continuous supply of
oxygen and other nutrients, as well as waste removal, by

blood flow through a network of vessels.1,2 Vascular architec-
ture constrains how blood flow can be controlled to meet
metabolic needs in the inner retina.3 Moreover, vascular
structure in the retina may aid the diagnosis and management
of diseases that involve vascular dysfunction, such as diabetic
retinopathy,4 glaucoma,5,6 and cardiovascular disease.7,8 Thus,
comprehensive architectural analysis of the inner retinal
vasculature will impact both basic research and clinical
practice.

Optical imaging through the transparent ocular media offers
the opportunity to quantitatively assess vasculature noninva-
sively in vivo. The blood vessels of the inner retina exhibit a
characteristic three-dimensional (3D) layered structure, with
superficial, intermediate, and deep vessel layers, corresponding
to the ganglion cell layer/nerve fiber layer, the inner plexiform
layer, and the outer plexiform layer, respectively.9 A fundamen-
tal limitation of 2D photography-based techniques, such as
fluorescein angiography,10 is the lack of depth discrimination,11

due to overlapping signals from the individual retinal layers and
the choroid.

Optical coherence tomography (OCT)12 enables 3D optical
sectioning of the retina with micron-scale resolution,13

employing only intrinsic contrast without the requirement for
additional contrast agents. The superior axial resolution of OCT
distinguishes the layered architecture of the retina, including
the capillary plexuses located in the plexiform layers.14 Optical
coherence tomography angiography techniques,15–18 based on
enhancing contrast arising from motion and scattering, were
recently developed for selective imaging of only the ‘‘function-
al’’ vasculature perfused with moving blood cells. Doppler
OCT19,20 has also been shown to perform quantitative
assessment of blood flow.21

Optical coherence tomography–based studies involving 2D
segmentation have proven effective for visualization22 and
feature detection,23 however, 3D analysis is required to assess
the true vascular topology, more directly related to function. In
this work, we derive a 3D representation, or ‘‘graph,’’ of the
vasculature in the rat inner retina based on OCT angiography
data. Unlike previous segmentation efforts in the retina, the
interconnected nature of the multilayered vascular structure is
implicitly incorporated into the derived representations and
analysis. Using the graph, in conjunction with experimentally-
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quantified blood flow data (computed using Doppler OCT
methods24) and a simple theoretical network model of blood
flow, the capability of blood vessel dilation to produce
localized and lamina-specific changes in blood flow is
examined.

METHODS

Imaging Protocols

OCT Microscope and Animal Preparation. The rat eye
was imaged with a 1300-nm spectral/Fourier domain OCT
microscope25 operating at a speed of 47,000 axial scans per
second with a transverse resolution of 7.2 lm and an axial
resolution of 3.6 lm.26 The use of 1300-nm light, as opposed to
800-nm light, results in less prominent ‘‘tail’’ artifacts beneath
large vessels, thus facilitating image segmentation. Male
Sprague-Dawley rats (350–430 g) were anesthetized with 40
to 50 mg/kg/h a-chloralose, infused intravenously, while
maintained at 378C with a homeothermic blanket. Pupils were
dilated with 1% tropicamide (Mydriacyl; Alcon Laboratories,
Fort Worth, TX, USA), and imaging was performed using a
contact lens and goniosol on the cornea. Animals were
ventilated with 80% air and 20% oxygen, and arterial blood
pressure was monitored through a femoral artery cannula. All
procedures were approved by the Institutional Animal Care
and Use Committee where these experiments were performed,
and adhered to the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research.

Angiography

The aim of OCT angiography is to enhance the contrast of
scattering red blood cells (RBCs) in vessels with respect to the
surrounding nonvascular tissue. The complex OCT signal can be
considered as the superposition of a static component, a dynamic
component, and an additive noise component.27 At any given
voxel, these three components are assumed to be independent
complex random processes. The power in the dynamic scattering
component is related to RBC content; therefore, estimation of
this power yields a representation of the angiogram. This can be
computed through high-pass filtering the complex OCT signal in
time, followed by averaging. Our angiography scanning protocol
acquired cross-sectional images with 512 axial (z) scans, repeated
twice at each of 5120 transverse (y) locations, over a field-of-view
of 1.48 3 1.48 mm2.26 The total acquisition time was approxi-
mately 2 minutes.

The high-pass filter was achieved through complex
subtraction of repeated frames. The interframe time was
approximately 11 milliseconds, sufficient for the dynamic
scattering component of the complex OCT signal to decorre-
late. Thus, the resultant angiogram was largely insensitive to
RBC speed and therefore depended mostly on RBC content.28

Bulk axial motion between frames, which leads to a uniform
shift in the phase of the complex OCT signal,29 was fixed by
computing and correcting for the phase shift between
corresponding A-lines in consecutive frames. The volumetric
angiography data from the inner retina was averaged and
resampled to 1024 3 1024 3 100 voxels.

Doppler OCT

For the Doppler OCT scanning protocol used in this study, four
volumes (256 cross-sectional images with 4096 axial scans
each) were acquired sequentially. Each volume acquisition
required approximately 25 to 30 seconds. Doppler shifting
causes a pure rotation of the OCT signal in the complex plane,
and leads to a frequency shift of the power spectrum.

Frequency shifts along the fast axis were first estimated and
then converted to velocity axial projections. Velocity axial
projections were then used to compute volumetric flow.
Because the scanning protocol sampled vessels asynchronously
with the heartbeat,25 time-averaged volumetric flow could be
obtained using the method of en face integration,24 which
eliminates the requirement for explicit determination of vessel
angle. The time-averaged flow was measured in individual
arteries and veins near the optic nerve head.

Image Processing

The segmentation and vectorization of OCT angiography data
present several unique challenges. In general, blood vessels
exhibit a wide range of sizes, curvatures, and geometries.30

Multiple scattering tails from large vessels or shadows from
media opacities contribute to variations in signal strength
across the imaged field. Optical coherence tomography
angiography data is also prone to shot noise, as well as speckle
noise31 compounded with sample motion, which can lead to
imperfect suppression of static tissue in the angiogram.
Additionally, underperfused vessel segments may not be
detected well in the angiogram. The series of image processing
steps described below were specifically tailored to mitigate
this set of potential confounds.

Image Enhancement and Binarization

Image enhancement was performed on the angiogram in order
to increase the contrast of the vessels within the image before
performing segmentation. In this work, the Frangi filter,32 a
widely-adopted multiscale vessel enhancement technique, was
applied to the image data. Subsequently, an empirically-
determined threshold was applied to the enhanced volume,
yielding a binary mask representation of the vasculature, which
forms the basis for the further computation of vessel topology.
Morphologic opening was then applied to mitigate the effect of
noise on the mask. Figure 1 illustrates the main image
processing steps involved in obtaining the binary segmented
vascular mask. Figure 1A shows a maximum intensity
projection of the angiogram image data from the rat inner
retina. Figure 1B shows a maximum intensity projection of the
enhanced data. Figure 1C shows the binary mask computed via
thresholding of the enhanced data.

Skeletonization

For blood vessel networks, skeletonization approaches endeav-
or to compute 1-voxel thick center lines that are equidistant
from the vessel boundaries. Typically, the skeletonization
process entails systematically removing voxels from the binary
mask, until only a single voxel thick structure remains. The
medial axis thinning algorithm described by Lee et al.33 is one
such 3D skeletonization method. A MATLAB (MathWorks,
Natick, MA, USA) implementation of this method34 was used to
obtain a 3D center-line mask that preserved the connectivity of
the initial binary mask.

Skeletonization errors typically take the form of small
erroneous branches occurring due to inhomogeneities in the
structure of the binary vessel mask, and gaps in segmented
branches (e.g., due to low signal contrast) that are manifested as
unconnected endpoints in the skeleton. Many of the small
erroneous branches can be removed by simply defining a well-
considered minimum length threshold. Threshold relaxation35

and tensor voting36 are two strategies that have been advanced
for the correction of vessel-gap errors, though few results have
been reported for 3D vascular data.37 Manually-guided ap-
proaches allow for comprehensively and accurately correcting
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skeletons, but are labor-intensive.38 We developed a suite of

automatic and manually-guided methods to correct the vascular

skeleton, as illustrated in Figure 2. Figure 2A shows uncorrected

and corrected skeletons, overlaid on the binary mask. Figure 2B

illustrates the resolution of a skeleton error performed by

combining multiple skeletonizations at different thresholds.

Figure 2C illustrates the joining of two unconnected endpoints

using a shortest-path algorithm. Figure 2D illustrates resolution

of an unconnected endpoint, using extrapolation of the

endpoint’s trajectory. Full details of the skeleton correction

methods can be found in the Supplementary Methods.

Vascular Graphing

To construct a graph of the vasculature, the corrected skeleton

was first converted to a vectorized map. Vectorization entails

FIGURE 2. A suite of correction methods, both automated and manual, were employed to achieve accurate segmentation (see Supplementary
Methods for full details). (A) The original skeleton (red) is overlaid on the binary mask (gray), with corrections (determined using the methods in
[B–D]) in green. (B) Skeleton correction by automatically combining skeletons at different thresholds. The bridging strand (green) is not present in
the initial skeleton (red), but at a lower threshold level the binary mask is extended by a region of lower intensity, which after skeletonization results
in the connection. (C) Skeleton correction by joining endpoints via a shortest-path computation. The manually identified endpoints are joined
together automatically using a method based on Dijkstra’s algorithm,39 where weights, computed from the enhanced image data, are used to
determine the optimal bridging strand. (D) Skeleton correction by extrapolation of an endpoint’s trajectory. The bridging strand is extrapolated
from the start point, based on the local curvature and intensity, until it reconnects with the skeleton.

FIGURE 1. Segmentation of angiogram image data from the rat inner retina. (A) Maximum intensity projection of angiogram image data; (B)
maximum intensity projection of enhanced angiogram image data; (C) 3D rendering of the segmented binary mask.
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explicitly labeling all branches and nodes (branch points) that
constitute the corrected skeleton, as well as determining the
interconnectivity between them (see Supplementary
Methods). We described the branching hierarchy of the retinal
blood vessels using branch order, which describes the
minimum number of bifurcations to reach a given vessel
branch, assuming an order of ‘‘1’’ for major vitreal vessels.
Vessel branch length and diameter were estimated using a 3D
parametric curve-fitting approach (see Supplementary
Methods for full details).

Flow Simulation for Arteriole and Capillary
Dilation

A model-based reconstruction of blood flow, using a resistive
network, was used to further probe the interconnectivity of
the retinal vasculature (see Supplementary Methods). Absolute
values of flow and pressure are not necessarily accurate in
such a model, as they depend on assumptions relating to the
boundary conditions and blood viscosity. However, the
distributions of these parameters are largely independent of
such assumptions,40 and thus flow simulations based on the
model can be used as a means to conceptualize vascular
interconnectivity.

In order to investigate how the topology and connectivity of
the vascular network impact blood flow control, dilations of
selected arterioles, and capillaries were simulated. The
purpose of these simulations was to investigate whether local
retinal blood flow could plausibly be controlled through
localized vasodilation. Dilation was simulated by increasing the
diameter of a particular vessel by an amount on the order of
experimentally measured dilations in rats.2,3 Two types of
dilation experiments were performed. Firstly, simultaneous
dilation of all vessels of a particular category (either arterioles
or capillaries) was performed in order to elicit a bulk response

in flow. For arterioles, the specified diameter increase was 10%
to 12%, whereas for capillaries it was 0% to 2.5%.2,41 The
proportionate change in total capillary flow across each vessel
layer, in response to dilation, was computed. Secondly, a single
arteriole was dilated by 10%. This procedure was repeated for
every arteriole in the network, and the average proportionate
change in flow as a function of branching distance from the
dilated arteriole was computed.

These simulations presented a unique opportunity to assess
retinal blood flow regulation; however, several limitations
should be mentioned. The localized dilation of a single
arteriole may not be realistic, and beyond the limits of the
spatial precision of neurovascular coupling in the retina.2 Also,
our assumption of constant flow boundary conditions (see
Supplementary Methods) may not be realistic. While the
arteriole to dilate was chosen away from the boundary of the
imaged region, the assumption of constant flow boundary
conditions may have required more redistribution of flow than
would have been necessary during realistic functional hyper-
emia in the retina. In reality, the flow supplying and draining
the retinal sector with arteriolar dilation would probably
increase, thus leading to a more uniform increase in flow than
was predicted by our simulations (which, because the
boundary conditions were not changed, implicitly required
balancing the local increase in flow with a decrease in flow
elsewhere).

RESULTS

Topologic features of the retinal vasculature were derived from
the skeletonized data (Fig. 3). We corrected and skeletonized
the inner retinal vasculature, and delineated each of the
vascular layers by color (Fig. 3A; see also Supplementary Movie
S1). The proportion of total skeleton branches that were

FIGURE 3. Topology of the retinal vasculature. (A) Skeletonization of inner retinal vasculature with different layers denoted by color (see also
Supplementary Movie S1). (B) Linear vessel density for the three vascular layers. The error bars represent the SEM. (C) Histogram of estimated
vessel branch diameters, computed over three separate retinal datasets. A Kruskal-Wallis test rejected the null hypothesis that branch diameters
were similarly distributed for the three vascular layers (P < 0.01).
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introduced by the skeleton correction procedures (Fig. 2) was
18.4 6 4.0% (N ¼ 3). We then determined the averaged linear
vessel density in each layer, computed as the total length of all
vessels in the layer divided by the field of view size (Fig. 3B),
and compared the distribution of vessel diameters by layer (Fig.
3C). A Kruskal-Wallis test42 was used to determine if the
branch diameters in each of the three different layers were
similarly distributed. The test rejected the null hypothesis that
the branch diameters in each layer had the same distribution, at
a 1% significance level. Thus, vascular metrics differ in each
layer, pointing to the varied biology of inner retinal vascula-
ture.

The graph representation further enabled laminar analysis
of branching order (Fig. 4). We determined the order of all
vessel branches in the graph (Fig. 4A, see also Supplementary
Movie S2), by assigning an order of 1 to the major supplying
and draining vessels and then using the connectivity informa-
tion from the graph to infer the order of all other branches (as
illustrated in Fig. 4B). We then compared the distribution of

branch order among the three vascular layers (Fig. 4C). A
Kruskal-Wallis test was used to determine if the branch orders
in the three different layers were similarly distributed. The test
rejected the null hypothesis that the branch orders in each
layer had the same distribution, at a 1% significance level. Thus,
inner retinal microvasculature, supplied and drained through
the vitreal arteries and veins, respectively, forms a ‘‘tree,’’ with
higher order branches in deeper layers.

Laminar analysis of interconnectivity of the 3D vascular
network was performed through highlighting connecting
vessels (Fig. 5). The density of vessels connecting between
the superficial and intermediate layers for the illustrated
dataset was 77.2 mm�2 while the density of vessels connecting
between the superficial and deep layers was 26.9 mm�2. In
contrast, the vasculature in the intermediate and deep layers
(the plexiform layers) was intimately connected, with an
interconnecting branch density of 253.0 mm�2. Supplementary
Figure S1 shows the density of offshoots (arterioles and
venules) per unit length, for the major supplying/draining

FIGURE 4. Laminar analysis of branching orders. (A) Map of vessel branch order (see also Supplementary Movie S2); (B) diagram illustrating the
definition of branch order: major supplying arteries and veins have an order of 1, arterioles and venules have an order of 2, and other vessels
(capillaries) have an order of 3 or higher; (C) Histogram of vessel branch orders, illustrating the distribution of branches of different order among the
three vascular layers. A Kruskal-Wallis test rejected the null hypothesis that branch orders were similarly distributed for the three vascular layers (P
< 0.01).
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arteries and veins. Implications of the asymmetric connectivity
for blood flow regulation are investigated below.

While the graph is informative, its utility for inferring blood
flow control mechanisms is limited. Therefore, we further
developed a simple network flow model, informed by
experimental boundary conditions, based on the graph.
Initialization of the flow simulation was based on the
measured Doppler OCT flow rates, assigned to the large
vessel branches in the superficial layer (see Supplementary
Methods). Experimental flow rates were not available for loose
vessel branches in the capillary layer. In the absence of other
information, these branches were assigned a flow rate
ascertained by averaging the absolute flow rates computed
for capillaries of similar diameter and assigning the flow
direction randomly.

We then mapped the simulated effects of vessel dilation, by
computing proportionate changes in flow for each vessel (Fig.
6). Figure 6A shows a map of the normalized estimated change
in flow resulting from simulated dilation of an arteriole branch.

The dilation was simulated by increasing the arteriole’s
diameter by 10% and recomputing the flow in the network.
Figure 6B shows an oblique 3D view of the flow change map.
This result confirms the capacity of the inner retinal vascular
network for local blood flow regulation.

Figure 7 summarizes both the laminar variation and spatial
localization of flow changes after simulated vessel dilation. We
investigated dilation of capillaries and arterioles, both candi-
dates for active control of blood flow. We first computed
proportionate changes in total capillary flow in the three
retinal layers when all vessels in a given category were
simultaneously dilated by random amounts based on previously
reported experimental measurements.2 Five repeated simula-
tion experiments were performed. The averaged results and
standard errors are shown in Figure 7A. We then computed the
proportionate change in total flow due to simulated dilation of
an individual arteriole by 10%. The dilation experiments were
repeated for all arterioles in the network, choosing a different
arteriole each time. The averaged results and standard errors

FIGURE 5. Laminar vascular interconnectivity. The maps highlight (red) vessel branches whose two associated node points are located in different
vascular layers (i.e., branches that connect different vascular layers to each other).

FIGURE 6. Spatial localization of changes in flow after simulated vessel dilation. (A) Map of the normalized change in flow produced by a 10%
dilation of an arteriole branch. The dilated branch is marked in green; (B) zoomed-in oblique 3D view of the map in (A).
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are shown in Figure 7B, as a function of branch order relative

to the dilation site (as illustrated in Fig. 7C). In summary,

arteriole dilation causes localized and lamina-specific flow

changes, while bulk dilation of capillaries in a given layer

effectively recruits flow to that particular layer.

DISCUSSION

Our results demonstrate, to our knowledge, the first 3D

vectorized graph of the inner retinal vasculature. Our results

confirm that the inner retina is supplied from the large vitreal

arteries to a ‘‘trilaminar’’ hierarchy of higher-order vessels

consisting of the ganglion cell layer/nerve fiber layer (super-

ficial), inner plexiform layer (intermediate), and outer plexi-

form layer (deep). The intermediate and deep layers of

vasculature were found to stratify with dendrites in the

plexiform layers, where metabolism is highest.43 Particularly,

the intermediate layer was located around the off-sublamina at

the outer edge of the inner plexiform layer.44 The three layers
are drained via the vitreal veins.

The graphing methodology demonstrated in this work has
provided insight into the inner retinal architecture beyond the
well-accepted description above. In particular, a branching tree
parallels the laminar hierarchy, with lower order vessels on
average in the superficial layer, compared with higher order
vessels on average in the deep layer, with the intermediate layer
tending to have more intermediate branching order vessels (Fig.
4C). Moreover, there are clear laminar differences in vessel
density, with the deep layers having the highest density (Fig.
3B). In view of the fact that the deep layer also has the highest
vessel orders (Fig. 4C), the higher density in the deep layer may
be viewed as compensating for lower flow per vessel and the
presumed lower oxygenation in higher order vessels.

The capacity for laminar control of blood flow in the retina
depends critically on the nature of connections between the
inner retinal layers, which were analyzed for the first time in
this work. The interconnectivity between the superficial and

FIGURE 7. Laminar dependence and spatial localization of flow changes after simulated vessel dilation for various vessel categories: arterioles
(superficial-deep; ASD), arterioles (superficial-intermediate; ASI), capillaries (superficial; CS), capillaries (intermediate; CI), capillaries (deep; CD),
capillaries (connecting intermediate to deep; CC). (A) Proportionate change in the total flow among all capillaries in the three retinal layers, due to
bulk dilation of a given vessel category; (B) response to a single 10% arteriolar dilation, as a function of branch order relative to the dilation site and
averaged over all arteriolar dilation sites; (C) designation of branch order relative to dilation site. The dilated vessel in the illustrated case is an
arteriole connecting the superficial and intermediate layers.
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plexiform layers was found to be relatively sparse, whereas the
intermediate and deep capillary layers have an abundance of
interconnecting vessels (Fig. 5). The sparse connectivity
between the superficial vasculature and the capillary plexuses
may carry significance for disease, as the plexiform layers are
among the most oxygen-consuming layers in the retina.1 The
implications of this pattern of inner retinal vascular connec-
tivity on susceptibility to ischemia will be the subject of future
investigations.

Flow simulations based on the graph further demonstrated
the capacity of the inner retinal vascular architecture for both
laminar and localized blood flow control. Simulated results
based on a network flow model showed that flow changes in a
particular capillary plexus can be achieved by dilation of its
feeding arterioles (Fig. 7A). Bulk dilation of capillaries in a
given plexus also preferentially recruited flow to that plexus.
The redistribution of flow resulting from a dilation is local,
with changes diminishing sharply away from the dilation site
(Figs. 6B, 7B). In some cases, decreases as well as increases in
flow were observed in the vessels surrounding the dilation site,
ostensibly due to a passive redistribution of flow around the
activated vessel (Figs. 6B, 7B). The spatial flow response
patterns observed during simulated dilation are largely
consistent with the interconnectivity of the network.

Though flow simulations were useful to assess connectiv-
ity, a number of technical limitations should be mentioned.
Errors in baseline branch diameters can cause large errors in
simulated flow. To improve diameter estimates, higher
transverse resolutions will be enabled with adaptive optics
in the future. Arterioles (defined here as first-order branches
from vitreal arteries) and capillaries were singled out for
simulated dilation, as they are known or hypothesized to be
involved in blood flow regulation.45 The dilation was
modeled as a fixed increase, not localized to any particular
part of the vessel branch, and temporal effects were not
considered. Results are also qualified by insufficient knowl-
edge of how boundary conditions may change under dilation.
With these caveats in mind, the flow simulations confirmed
the capability of the trilaminar architecture to perform both
laminar and spatially localized control of inner retinal blood
flow. More complete physical models of flow will be
investigated in the future.

CONCLUSIONS

The model of the rodent inner retinal vasculature presented in
this work is, to our knowledge, unique in its level of topologic
detail. Vascular branching patterns within the capillary
plexuses are represented along with supply and drainage
routes. The capability for laminar and localized control of
blood flow is theoretically confirmed by treating the vascula-
ture as a resistive network. Models that integrate vascular
structure and flow distributions in 3D will advance under-
standing of the relationship between blood flow, metabolism,
and neuronal activity, and provide a framework for character-
izing the progression of retinal diseases.
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