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The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery
and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic
Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has
been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a
method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-
sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit
timemetrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concen-
tration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even
deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against
dilution curvesmeasured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate
the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex.
Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers.
The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset
times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular
supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Bloodflow (Kety and Schmidt, 1948; Kety, 1951), delivered bymajor
cerebral arteries to the microvasculature, supplies oxygen to support
themetabolic requirements of normal brain function. While the impor-
tance of cerebral bloodflow iswell-known,microvascularflowdistribu-
tion at the site of oxygen delivery is also critical to the biophysics of
oxygen extraction and consequently, the interpretation of functional
neuroimaging signals based on blood oxygenation. In particular, the
transit time of blood through the pre-capillary arterioles and capillary
bed, where most oxygen is delivered to tissue (Duling and Berne,
1970), determines the maximal fraction of oxygen molecules that can
be extracted from the vasculature through diffusion (Buxton, 2002).
Additionally, the time lag between an increase in blood flow and the
resulting microvascular oxygenation increase is determined, in part,
by the transit time. Thus, transit times contribute to the kinetics of
functional neuroimaging signals based on blood oxygenation (Marota
et al., 1999). Particularly, in order to correctly interpret observable lam-
inar kinetics in blood-oxygen-level-dependent functional Magnetic
cal Engineering, University of
avis CA 95616, USA.
Resonance Imaging (BOLD fMRI) (Silva and Koretsky, 2002; Logothetis
et al., 2002; Lau et al., 2011; Siero et al., 2011; Yu et al., 2014), laminar
differences in transit times, if present,must be accounted for. Thus, tran-
sit time is a fundamental microcirculatory parameter of importance to
both oxygen delivery and the kinetics of functional neuroimaging
signals.

As capillaries are heterogeneous in topology and flow supplymay be
non-uniform, blood may travel between an artery and vein by numer-
ous paths through the capillary bed. Rather than a single transit time,
these paths are characterized by a distribution of transit times (Tomita
et al., 1983). Recently, it was demonstrated theoretically that this
capillary transit time heterogeneity, the standard deviation of this
distribution, potentially leads to non-uniform oxygen extraction in
micro-domains (Jespersen and Ostergaard, 2012). Moreover, it was
shown that the transit time distribution, rather than mean transit time
(MTT) alone,most directly determines themaximumoxygen extraction
that a capillary bed can support (Jespersen and Ostergaard, 2012).
Recent theoreticalwork has implicatedpathological transit time hetero-
geneity in a number of diseases including stroke (Ostergaard et al.,
2013a), ischemia (Ostergaard et al., 2013b), Alzheimer’s disease
(Ostergaard et al., 2013c), traumatic brain injury (Ostergaard et al.,
2014a), and diabetic nephropathy (Ostergaard et al., 2014b), leading
to renewed interest in this subject. In spite of these theoretical studies
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highlighting the importance of transit time distribution, efficient and
robust experimental methods that quantify this distribution at the
capillary level have been lacking.

Neuroimaging techniques such as positron emission tomography
(PET) can indirectly determine MTT from the central volume theorem
(Stewart, 1893), as the ratio of cerebral blood volume (CBV) to cerebral
blood flow (CBF) (Ibaraki et al., 2007). In Magnetic Resonance Imaging
(MRI), the passage of a CBV tracer through the vasculature after bolus
injection (Lassen, 1984) can be used to comprehensively assess hemo-
dynamics. In particular, if residue functions, describing the fraction of
tracer present in the vasculature over time, can be determined by fitting
procedures, then CBF, CBV, and MTT can all be determined after an
intravenous bolus injection (Ostergaard et al., 1996). Importantly, infor-
mation about the transit time distribution is inherently contained in fit
residue functions (Ostergaard et al., 1999). However, arteriovenous
transit time distributions based on residues fromMRI bolus tracking in-
herently average all capillary paths and provide no spatial information
within a voxel. Thus, laminar or localized transit time distributions are
not accessiblewithmacroscopic bolus tracking and imaging techniques.

Optical techniques such as laser Doppler flowmetry (Dirnagl et al.,
1989), diffuse correlation spectroscopy (Durduran and Yodh, 2014),
and laser speckle flowmetry (Dunn, 2012) use statistical metrics to de-
termine the motion of scattering from red blood cells (RBCs). However,
the shape of the power spectrum or autocorrelation function measured
by these techniques provides little information about the underlying
velocity distribution (Bonner and Nossal, 1981), and the spatial distri-
bution of flow across micro-vessels is lost due to multiple scattering
events. Moreover, the variable and unknown scattering properties of
biological tissue (and consequently the number of dynamic vs. static
scattering events) make absolute quantification challenging using
these methods.

Optical microscopy of flow inmicrovessels can determine the transit
time distribution, particularly if used in conjunction with a connectivity
graph (Blinder et al., 2013). Two-photon microscopy (2 PM) line scans
across vessels can quantify velocity and flux, but require individual
sampling of vessels which can be time consuming (Kleinfeld et al.,
1998). Although alternative methods, not based on oriented line
scans, can be applied (Kamoun et al., 2010), scanning speeds, penetra-
tion depths, and fields-of-view remain limited. Fluorescent tracer
kinetic-based techniques have been applied with 2 PM using bolus
injections, albeit with penetration depths limited to a few hundred
microns (Hutchinson et al., 2006), only a fraction of the rodent cortical
thickness. Doppler optical coherence tomography (OCT) can assess
flow in arteriolar supply zones (Srinivasan et al., 2013), but operates
most accurately in large vessels with a well-defined cross-sectional
flow profile, rather than capillaries. Recently, decorrelation-based
(Wang and Wang, 2010; Srinivasan et al., 2012; Uribe-Patarroyo et al.,
2014; Jia et al., 2012; Oldenburg et al., 2013) OCT metrics of capillary
speed or count-based (Ren et al., 2012) OCT metrics of capillary speed,
flux, and density have been developed. These methods are high
throughput, but require calibration of the focal spot size to relate either
decorrelation rate or pulse width to RBC speed. As light propagates
deeper into scattering tissue, the focal spot degrades in a manner that
depends on tissue-specific scattering properties, and can be difficult to
calibrate. Thus, decorrelation or count-based metrics are less reliable
deep in the cortex where the focal spot degrades in a spatially (and
possibly time-) varying manner. Hence quantification of capillary flow
parameters in deep cortical layers remains challenging.

Here, we introduce Dynamic Contrast Optical Coherence Tomogra-
phy (DyC-OCT), a new technique based on cross-sectional imaging
of intravascular tracer kinetics, for measurement of capillary transit
time distributions at the microscopic scale. After validation, we apply
this new technique to comprehensively characterize the transit time
distribution across the mouse neocortex. We focus on addressing the
following questions: Could the distribution of transit times across corti-
cal depths plausibly account for laminar differences in BOLD fMRI? Do
layer-specific differences in transit time heterogeneity correlate with
differing metabolic requirements of individual cortical layers?

Our results clearly show earlier transit times and less transit time
heterogeneity in the middle cortical layers. The early transit times in
the middle cortical layers provide one possible explanation for laminar
variations in fMRI BOLD onset time that does not invoke laminar
variations in activation kinetics. The low transit time heterogeneity in
layer 4 may explain, in part, how the vascular supply optimizes oxygen
extraction efficacy to match the higher metabolic needs of this layer.
More broadly, the new DyC-OCT technique affords a novel perspective
of microvascular networks, with the unique capability of simultaneous-
ly measuring transit time distributions across cortical laminae.

Methods and materials

Optical Coherence Tomography (OCT) (Huang et al., 1991) focuses
a beam of light into tissue and measures the backscattered or
backreflected light from different depths in the tissue. Beam scanning
generates depth-resolved images, similar to B-mode ultrasound. In the
brain, imaging depths up to and exceeding 1 mm are possible with
OCT at 1300 nm. A number of OCT angiography methods have been
developed for the visualization of blood vessels within scattering tissue
(Fingler et al., 2007; Wang et al., 2007; Mariampillai et al., 2008; Tao
et al., 2008; Vakoc et al., 2009). Recently, a highly sensitive OCT angiog-
raphymethodwas proposed to separate both dynamic and static signals
in cortical tissue (Radhakrishnan and Srinivasan, 2013).

One of the strengths of OCT in clinical applications has been the fact
that imaging can be performedwithout contrast agents. Here,we instead
use the OCT angiography technique to observe time-resolved changes in
the dynamic signal during the passage of an exogenous tracer through
the imaged field-of-view. For this study, an FDA-approved intravenous
nutritional supplement called Intralipid, recently shown to enhance
contrast in steady-state Doppler OCT images following intravascular
injection (Pan et al., 2014), was used. Indicator-dilution theory was
then applied to the dynamic scattering signal to extract quantitative
information about the mouse neocortical hemodynamics following
bolus injection.

Optical Coherence Tomography (OCT) system setup

A 1325 nm spectral / Fourier domain OCTmicroscope (Leitgeb et al.,
2003) was used to image the mouse neocortex, as shown in Fig. 1. The
light source consisted of two superluminescent diodes combined to
yield a bandwidth of over 100 nm. The theoretical axial (depth) resolu-
tion, after computational spectral shaping of the raw spectrum, was
7 μm in air (5.3 μm in tissue). The spectrometer, with a 1024 pixel
InGaAs line scan camera, was operated at 91 kHz. Imaging was
performed with a 5x objective, yielding a transverse resolution of 15
microns, and a 10x objective, yielding a transverse resolution of 7.5
microns. The system sensitivity, the minimum sample reflectivity that
can be detected, was 91 dB.

Modified setup for simultaneous OCT and fluorescence imaging

In order to acquire spatially and temporally co-registered fluores-
cence and OCT data, the imaging setup was temporarily modified, as
noted in Fig. 1. To collect fluorescence light, a wide-field camera built
into the OCT probe for alignment of the sample was used. A narrow-
bandwidth 470-nm LED light source was used for excitation and was
additionally short-pass filteredwith a 490-nmdichroic mirror. To reject
backscattered excitation light, an absorptive 515-nm long-pass filter
was placed in front of the camera. Due to the spatial restrictions of the
enclosed commercial OCT probe, this filter had to be placed in the
path of the OCT beam which is believed to cause ~15% round-trip
drop in OCT signal intensity.



Fig. 1. Imaging setup. Bymodifying a Thorlabs Telesto 1325 nmOCT system, spatially co-registered dynamic fluorescence and OCT imagingwas performed simultaneously. The schematic
for this system is shown with the following abbreviations: SLED – Superluminescent Diode, LSC – Line Scan Camera, DG – Diffraction Grating, DM – Dichroic Mirror, GM – Galvanometer
Mirror, DGM –Dichroic GalvanometerMirror, LPF – Long-Pass Filter, OBJ –Objective Lens, VIS –Visible, BS – BeamSplitter, CCD – Charge-Coupled Device Camera. Italicized and underlined
labels denote components added to enable fluorescence imaging. Due to the spatial constraints imposed by the commercial probe, the long-pass filter, used to reject stray excitation light,
was placed in the OCT beam path. This caused an estimated 15% excess loss in OCT signal intensity. Components for fluorescence imaging were removed when the fluorescence channel
was not used. Cyan lines denote excitation light, green lines represent lightwith awavelength in the emission spectrum, and red lines represent the OCT beamwith a centerwavelength of
1325 nm.

352 C.W. Merkle, V.J. Srinivasan / NeuroImage 125 (2016) 350–362
Animal preparation

The animal procedures were approved by the Institutional Animal
Care and Use Committee at UC Davis. Male C57/BL6 mice (n = 10;
20–35 grams) were used in this study. The mice were initially anesthe-
tized with 1.5% v/v isoflurane with a gas mixture of 80% air and 20% ox-
ygen. After successful induction of anesthesia, the mice were mounted
on a stereotactic framewith continued delivery of 1–1.5% v/v isoflurane,
modulated as necessary to maintain healthy and steady breathing
throughout the surgical and imaging procedures. Once in the frame,
the scalp was retracted, the fascia was removed, and the skull was
cleaned and dried using a gauze pad. Using a progressively finer series
of dental burrs, a ~3 × 3 mm2 region of the skull lateral to themidpoint
between lambda and bregma was thinned to within ~30 μm in thick-
ness. This made the skull more transparent, and enabled imaging of
the somatosensory cortex through the thinned regionwithout requiring
an invasive craniotomy. A 5 mm diameter coverglass was glued to the
thinned region. A large ball joint attached to the stereotactic frame
was used to position themouse such that the coverglasswas perpendic-
ular to the beampath. Throughout the surgical and imaging procedures,
the animal’s core temperature was maintained at 37 degrees Celsius
using a heating blanket (Harvard Apparatus USA). Anesthetic levels
were titrated carefully by an investigator experienced in monitoring
the breathing rate and pattern tomaintain end-tidal pCO2 levels around
4%, as measured by a capnometer (Columbus Instruments).
Bolus injection protocol

A tracer bolus was injected into the tail vein using either a 27 or 31
gauge syringe as shown in Fig. 2A. The bolus was restricted to ~100 μL
(3 mL/kg weight, representing approximately 3.8% of the mouse blood
volume) to minimize changes in cortical hemodynamics due to the
bolus itself. Furthermore, the bolus was injected quickly (~0.5 s) to ap-
proximate an idealized delta input function andmaximize the DyC-OCT
signal. In practice, input delta functions at the imaged site could not be
achieved due to transit timedispersion from the injection site to the cor-
tex. For the DyC-OCTmeasurements, Intralipid 20%was used as the con-
trast agent. For the simultaneous DyC-OCT and fluorescence
measurements, a 4:1 mixture of Intralipid 20% and saline-dissolved fluo-
rescein isothiocyanate–dextran (FITC-dextran) was used. The final FITC-
dextran concentration was 5% weight by volume.
DyC-OCT imaging protocol

To capture the change in scattering signal as the bolus passes
through the vasculature, repeated B-scans, or cross-sectional images,
of the same area were acquired to generate a 2-D time-resolved cross-
section of the cortex. 1000 B-scans, consisting of 1024 axial scans
each, were acquired every 13 ms (77 Hz) along a 1–2.5 mm lateral
span of the cortex to observe the dynamic signal change due to tracer
passage over a time window of 13 s starting at the time of tracer injec-
tion. An appropriate imaging plane was selected based on several steps.
First, the imaging plane was placed over the somatosensory cortex,
using the skull sutures as a guide. Next, a region for imagingwas chosen
that contained at least one large artery and one large vein to ensure that
the distribution of microvascular hemodynamic information covered all
vascular compartments. After this, the final location within the somato-
sensory cortex was refined to ensure vessels were measured from as
many cortical layers as possible. Visibility of deeper layers was affected
by a number of factors including surface vessel position and thinned-
skull window quality, which meant that the optimal imaging position
changed slightly from animal to animal.



Fig. 2. DyC-OCT image acquisition and processing. DyC-OCT imaging produces 3-D stacks of data which are then processed along the temporal axis by fitting a model to the indicator-
dilution response represented by the OCT signal at every (x,z) location. A) DyC-OCT follows a simple imaging protocol in which an OCT tracer is injected via the tail vein, repeated B-scans
are acquired at the region-of-interest directly following injection, and the acquired data is processed. B) DyC-OCT generates a 3-D stack of temporally-resolved B-scans, which are converted
into temporally resolved angiograms, at the region-of-interest as the tracer passes through. C) Selection of the temporal profile associated with a single location. D) A typical DyC-OCT signal
showing a baseline level before the bolus arrives, a sharp increase followed by a slow decrease in signal with the first passage of the tracer bolus, and eventual settling at a level higher than
baseline due to recirculationof the tracer. E) Second-Order PlusDeadTime (SOPDT)modelfitting andextractionof features such as arrival time, FWHM, andpeak time. F)Recirculationdegrades
the accuracy of themodel’sfit. The red dotted line associatedwith the poorfit, shown in red,marks the cutoff pointwhich includes recirculation. The black dotted line associatedwith the better
fit, shown in black,marks a cutoff at 5 s that avoids recirculation. G)However,when the same5 s cutoff fromF) (red dotted line) is used in a different vessel, thefit, shown in red, is poor. A better
fit, shown in black, is achieved using an adaptively determined cutoff (black dotted line). For this reason, the cutoff for fitting was adaptively determined for each vessel.
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Fluorescence imaging protocol

To validate the DyC-OCT methods, spatially and temporally co-
registered DyC-OCT and fluorescence measurements were acquired
in surface vessels of the mouse cortex. A custom LabView program
was used to simultaneously acquire wide-field fluorescence images
and OCT B-scans over the same region-of-interest at a rate of 30 Hz.
Data processing

Several methods were developed to analyze the DyC-OCT data both
parametrically and non-parametrically on a pixel by pixel basis.
OCT angiography
OCT angiograms were produced by removing the static scattering

component of the OCT signal (Radhakrishnan and Srinivasan, 2013).
This was accomplished by performing a complex subtraction, or high-
pass filtering, along the slow axis of repeated B-scans. This subtraction
removes the static scattering components, which do not change over
time, while highlighting the areas where the scattering signal does
change, as in vasculature with blood flow. A phase correction was per-
formed before the complex subtraction to account for sub-pixel axial
movement.
DyC-OCT signal
The DyC-OCT data was acquired as a series of repeated B-scans

(Fig. 2B). First the static-scattering components of the signal were
removed using angiography methods described above to improve
detection of the tracer signal. This generates a second series of repeated
angiogram frames, one fewer in number than the original series. The
time-resolved dynamic signal at a given pixel can be obtained by
extracting the values of that pixel from each angiogram frame over
time (Fig. 2C). The passage of the tracer at a given pixel causes a change
in the dynamic signal shown in Fig. 2D that has several distinct features.
First, the baseline (pre-injection) value is attributed to the RBC scatter-
ing signal before the tracer arrives. Second, a sharp increase in signal as
the tracer passes through for the first time is followed by a slower
decrease. Third, settling of the signal at a level higher than baseline,
due to recirculation of the temporally dispersed tracer, is observed.
This occurs when the injected tracer passes through the body, returns
to the heart, and is pumped back through the imaging plane. This
typically happens before complete decay of the tracer signal. For all
steps below, the angiogram data was averaged 3x laterally 3x axially
and 3x temporally to reduce speckle noise.

Signal increase mask
Thefirst step in visualizing this datawas to determine the increase in

the angiogram signal caused by the tracer bolus shown in Fig. 3A–B. A
baseline signal was determined by averaging the first 1 to 2 s of data



Fig. 3. DyC-OCT cross-sectional mapping of the mouse cortex. Pixel-by-pixel analysis of the DyC-OCT signal following bolus injection of a contrast agent, reveals functional information
aboutmicrovascular networks in themouse cortex. Surface arteries and veins,markedwith a blue “V” or red “A” respectively,were identifiedprior toDyC-OCT imaging through inspection
of an en face angiogram. A–B) Intralipid (contrast) injection significantly increases the angiogram signal in the vasculature in the imaged cross-sectional plane. C) The gray andwhitemasks
showwhere the increase in angiogram signal exceeded the noise threshold. The white mask represents the vessels that were further analyzed after size and goodness of fit thresholding.
Large vessels and noise (graymask)were rejected. D) Goodness of themodel’s fit shows that the best fits correspond to regionswith a large signal increase. E–F) The arrival times and peak
times of the tracer, extracted from them SOPDT model, separate arteries and veins, and illustrate capillary heterogeneity.
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before the bolus arrived. Then the global maximum of the signal during
the measured time course was determined after additional temporal
averaging to reduce noise. The maximum signal divided by the baseline
yielded the relative increase in signal. The next step was to threshold
out the background noise to create a mask of the vasculature where
the tracer had traveled as shown in Fig. 3C. To do this, the mean and
standard deviation of the noise in the signal increase map were mea-
sured by using a region of air above the skull. The threshold for the
maskwas set 4 standard deviations above this noisefloor corresponding
to ~35% increase in signal to isolate regions of interest in the data and to
reduce processing time for fitting.

Parametric model
To quantify parameters such as bolus duration and arrival time, a

second-order plus dead time (SOPDT)model was used after subtracting
off the baseline signal. This phenomenological model shown in Fig. 2E
uses arrival time (θ), signal frequency (ω), amplitude (A), and damping
ratio (ξ) variables to generate a curve similar to the angiogram signal
over time for each point. In the Laplace (s) domain this model is given
by:

G sð Þ ¼ e−θs

s2 þ 2ξωsþω2 ð1Þ

In practice, however, the model was converted to the time
(t) domain for faster fitting.

g tð Þ ¼ Au t−θð Þ eω t−θð Þ
ffiffiffiffiffiffiffiffiffi
ξ2−1

p
−ξ

� �
−eω θ−tð Þ

ffiffiffiffiffiffiffiffiffi
ξ2−1

p
þξ

� �

2ω
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2−1

q� �
2
664

3
775 ð2Þ
In the above equation, u is theHeaviside (unit step) function. A study
comparing indicator-dilution models has shown that the SOPDT model
fits indicator-dilution curves better than the traditional gamma-variate
model (Chinta et al., 2012).

Fit optimization and quality control
The variables in the SOPDTmodelwere optimized using a non-linear

least-squares method after subtraction of the baseline signal and
normalizing the signal to fall approximately between 0 and 1. Because
tracer recirculation invalidates the bolus model (Eq. (2)) after the
recirculation time (Fig. 2F), only the time window before recirculation
occurs should be used for fitting. If a single cutoff time for the fitting
window is used across the entire data set (Fig. 2G), the fit will be poor
in vessels with recirculation times before or after the cutoff. To achieve
the best fit, the model was applied twice under different conditions.
First, a generic cutoff time, typically between 6.5–13 s, was used for
every point in the map. For some points, this cutoff time was too early
and for others it was too late, so the model fit was not optimal overall;
however, a relatively accurate arrival time was still extracted. Next,
the model was fit again using a pixel-wise time window determined
by the “adaptive” recirculation cutoff time, obtained by adding a con-
stant, typically ~3 s, to the arrival time determined by the first fit. This
second fit was more accurate across the observed wide range of arrival
times (Fig. 2G).

The first fit was made using initial parameter values that are physi-
ologically likely based on experimental observations. The arrival time
(θ) was given an initial value of 2 s based on the average time it takes
the bolus to arrive at the destination from the time of injection and
was additionally constrained to be greater than zero. The damping
ratio (ξ) was given an initial value that was critically damped and was
constrained to be critically damped or over damped to avoid non-
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physiological oscillations in the fit. The frequency term (ω) was initially
set to 0.2 Hz andwas also constrained to be greater than zero to prevent
the SOPDTfit from inverting. Finally the amplitude (A)was given an ini-
tial value of 1 as the signal had already been normalized. The amplitude
termwas included to allow for better fits when the noise was high and,
similarly to the frequency term, was constrained to be greater than zero
to prevent the fit from inverting. The second fit, which used the adap-
tive time window described above, then used the optimized fit param-
eters from the first fit as its starting parameters. Once the adaptive
window fit had been made, several quality control measures were
taken. First, any fits that had R2 goodness of fit values less than 0.3
were removed. Additionally, fits with damping ratios that were too
high were rejected as this could cause the fit to plateau in a non-
physiological shape. Finally, fits which approximated delta functions,
in which the arrival, peak, and return times were too close together to
be physiologically possible, were removed. These steps ensured that
the Intralipid signal was accurately measured and that poor or
erroneous fits were rejected.

Microvessel selection
After a final map of the transit characteristics had been generated as

shown in Fig. 3E-F, individual vessels were automatically segmented
and studied. Because the focus of this study is to examinemicrovascular
transit kinetics, the macrovascular networks were thresholded out
as shown in Fig. 3C. As many vessels were imaged at an angle, their
areas presented in the imaging plane may be larger than their true
cross-sectional areas. To prevent these microvessels from being inap-
propriately rejected and to estimate the radii as accurately as possible,
steps were taken to estimate the true cross-sectional areas. Ellipses
were fit to each vessel, and the ratio of the minor axis length to the
major axis length of each ellipse was multiplied with the measured
area to correct for the angle and to obtain a more accurate estimate of
the cross-sectional area and radius. Vessels were rejected if their
corrected cross-sectional areas were greater than 800 μm2which corre-
sponds to an estimated radius of ~16 μm. A histogram of the estimated
radii of the sampled vessels across all animals (Supplemental Fig. 1C)
clearly shows that macrovessels have been excluded.

Layer-dependent analysis
Features of theDyC-OCTdatawere analyzed as a function of depth in

the cortex. Here, we examined the DyC-OCT signal in themicrovascula-
ture to study trends associated with different layers. Cortical layer
boundaries were approximated from the Allen Mouse Brain Atlas
(Lein et al., 2007; Allen Mouse Brain Atlas, 2015). By combining white
light images of the OCT scan location on the mouse skull with informa-
tion from cross-sectional images, the slice location could be accu-
rately determined in brain atlas coordinates. The atlas, providing
both cortical region and layer information, was used to determine
cortical layer boundaries for the imaged region of interest, and to re-
move any vessels not located in the somatosensory cortex. Layer
thicknesses, used for partitioning data, were averaged over the
range of stereotaxic coordinates where OCT imaging was performed.
Averaged thicknesses were used due to the finite extent of OCT im-
ages, and the difficulty of imaging deep into the cortex at precisely
the same stereotaxic coordinates in each animal, due to variability
in surface vasculature.

Transit time distribution quantification
Indicator-dilution theory shows that if a tracer is injected into a

vascular network, and the tracer concentration is measured at an up-
stream location and a downstream location, then the transit time
distribution (TTD), or transport function, of the network connecting
the two points can be calculated. The venous signal (proportional to
the venous concentration) is equal to the TTD convolved with the
arterial signal (proportional to the arterial concentration) as shown
here where cv and ca are the venous and arterial concentrations
respectively, * denotes a convolution, and h(t) is the TTD (Meier
and Zierler, 1954):

cv tð Þ ¼ ca � hð Þ tð Þ ð3Þ

Furthermore, the central volume theorem allows us to calculate the
CBF with knowledge of themean transit time (MTT) and cerebral blood
volume (CBV), or the CBV given the CBF and MTT (Meier and Zierler,
1954):

CBV ¼ CBF � MTT ð4Þ

The relationship between the DyC-OCT signal in venous vasculature
related to the signal in connected arterial vasculature is given by a convo-
lutionwith the TTDdescribed in Eq. (3). To extract a quantitativemeasure
of the TTD from two measured signals, a discrete deconvolution can be
performed either on the raw data or on a fit to the data. The noise and re-
circulation effects in the raw signalmay cause poor deconvolution and ex-
traction of the TTD, so the modeled signals may also be used. Because a
convolution in the time domain is the same as a multiplication in the
transform domain, the deconvolution can also be directly calculated
from the SOPDT model as a division of the venous signal by the arterial
signal in the frequency domain followed by an inverse Laplace transform.

h tð Þ≈L−1 ω2
v

ω2
a
e− θv−θað Þss2 þ 2ξaωasþω2

a

s2 þ 2ξvωvsþω2
v

� �
ð5Þ

Here h(t) is the TTD,L−1 denotes the inverse Laplace transform, and
the a and v subscripts denote arterial and venous/capillary fitted
parameters respectively. As h(t) is typically taken to be a probability
density function, it has been normalized to ensure an area of one. The
MTT can then be determined as the centroid of the TTD.

Results

The results are organized as follows: first, validation of the DyC-OCT
technique is described. Second, the analysis of bolus arrival time, the
most robust DyC-OCT measure, as a function of cortical depth and
layer, is described. Third, bolus peak time, another robust measure, is
shown to correlate well with the MTT of the TTD function. Last, since
bolus peak time can be robustly measured and is a proxy for mean tran-
sit time, analysis of bolus peak time is also presented across cortical
depths and layers.

Validation

As shown in Fig. 3A–B, the Intralipid bolus transiently increases the
angiogram signal in vasculature. The relative increase was used to form
a binary mask to restrict subsequent fitting analysis (Fig. 3C). Based on
fitting, parameters describing tracer kinetics in individual vessels over
the cortical depth could then be visualized as images (Fig. 3D–F).
These images showed expected clear differences between arteries
(A) and veins (V) based on arrival times or peak times alone. Moreover,
as shown in Supplemental Fig. 2, the arrival times in a dural vessel
increased from upstream to downstream, with a profile consistent
with laminar, non-mixing flow streams. Importantly, cerebral blood
flow (CBF), as measured by Doppler OCT in surface vessels, did not
change during either the injection or the bolus passage (Supplemental
Fig. 3).

Intralipid was believed to behave as a blood plasma tracer due to its
relatively small mean particle diameter of 226 nm (Wen et al., 2009),
over an order of magnitude smaller than the diameter of RBCs. In order
to validate Intralipid as a plasma tracer, its kinetics were compared to
those of FITC-dextran during injection and imaging of amixture contain-
ing both. By performing spatially and temporally co-registered DyC-OCT
and fluorescence imaging, transit profiles of both tracers could be
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acquired with a single injection. In spite of the larger variance of the
Intralipid signal, attributed to speckle noise, transit profiles at the same
location in a vein were highly correlated as shown in Fig. 4C. These
profiles show a strong, linear relationship in Fig. 4D with an R2 value of
0.94 and p b b 0.0005. The DyC-OCT error bars get larger as the signal
level increases, due to the multiplicative nature of speckle noise. Due
to the incoherent nature of fluorescence emission, fluorescence imaging
is not affected by speckle noise and has lower signal variance. These
results indicate that although speckle increases the noise in the concen-
tration curves, Intralipid kinetics are highly correlated to those of a
standard fluorescent plasma tracer (Shockley and LaManna, 1988) at
the cortical surface, supporting the application of DyC-OCT to measure
transit times.

Further validation of DyC-OCT was performed by comparing the
arrival times from two consecutive injections in the same field of view
in the same mouse brain. Measurements were shown to be highly re-
peatable in larger vessels with estimated radii between 9 and 16 μm;
however, error between the two measurements increases as the vessel
size decreases (Supplemental Fig. 4). While this discrepancy may be
partially due to the effects of averaging fewer pixels in the smaller ves-
sels, physiological factors are also believed to contribute. These factors
may include fluctuations in microvascular flow patterns (Kleinfeld
et al., 1998) and changes in breathing or level of anesthesia, although
changes in blood viscosity due to the injections (Kessler et al., 2004)
cannot be ruled out as a source of error.
Fig. 4. DyC-OCT validation. Simultaneous and co-registered dynamic fluorescence and DyC-OC
tracer), after a simultaneous bolus injection containingboth.Wide-field dynamicfluorescence im
applying the processing methods described in Fig. 3 to dynamic fluorescence data, en face arriv
DyC-OCT (blue) and fluorescence (red) intensity signals corresponding to the passage of their r
red line) between the two signals is shown tohave anR2 value of 0.94 andp b b 0.0005. Datawer
OCT signal and horizontal error bars showing the standard deviation of the fluorescence signa
Arrival time analysis

In order to describe the laminar arrival time distribution across
cortical depths, data from DyC-OCT experiments in 10 animals were
grouped either according to cortical depth (Fig. 5B) or according to cor-
tical layer (Fig. 5C). These data sets were temporally aligned by using
the earliest mean arrival time from the supplying macrovasculature.
After alignment, the earliest arrival timewas subtracted from all vessels,
such that the earliest vessel had an arrival time of 0. An alternate
alignment based on the mean arrival time across all microvessels in
each animal was also tested and yielded similar results (Supplemental
Figs. 5 & 6). In summary, the minimum arrival time was identified in
layer 5, around 600–700 microns in depth, and the middle cortical
layers (layers 4–5) displayed the shortest arrival times on average.
The trend of decreasing arrival time with increasing depth was statisti-
cally significant in each subject up to 650 microns after accounting for
heteroscedasticity using a weighted least squares linear regression
(p b 0.05). Standard deviations were large superficially, mainly due to
the presence of a distribution of vessels with long arrival times
(Fig. 5A). The trend of decreasing arrival times with depth persisted
even after the groupwith long arrival times was removed (Supplemen-
tal Fig. 7B-C). More rigorous analysis was also performed by selecting
only microvessels with self-consistent parameter fits, as indicated by
low intravessel standard deviations (Supplemental Fig. 8). This analysis
showed that the findings of lowest mean arrival times and standard
T show that Intralipid dilution curves are similar to those of FITC-Dextran (a blood plasma
ages andOCT B-scanswere acquired at a rate of 30Hzover the samefield of view. A–B)By

al time and peak time maps were generated for the superficial vasculature. C) Normalized
espective tracers through the same vein location. D) The strong linear relationship (dotted
e binned in segments of 0.2 swith vertical error bars showing the standarddeviation of the
l within each temporal bin.



Fig. 5. Arrival time as a function of depth in the mouse somatosensory cortex. By segmenting the arrival time maps from 10 different mice, transit time trends associated with themicro-
vasculature were revealed. Large vessels were excluded based on size (exclusion criteria: radius N 16 μm). A) Relative arrival times in microvessels from all 10 mice are presented as a
function of depth. Each point is themean arrival timewithin a singlemicrovessel. B) Themean arrival time decreaseswith depth down to themiddle cortical layers (layers 4–5), followed
by an increase in layers 5–6. Estimated boundaries of different cortical layers are shown as dotted black lines and standard deviations are shown as red error bars. C)When layer-averaged
arrival timeswere compared acrossmice, themiddle cortical layers displayed shorter arrival times. Statistical testing used the Kruskal-Wallis test followed by Tukey’s Honestly Significant
Difference test to account for multiple comparisons (* p b 0.05, ** p b 0.005, and *** p b 0.0005). D–E) The intervessel standard deviation also decreased with depth down to the middle
cortical layers, reaching a minimum in layer 5 around 500-800 microns.
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deviations in themiddle cortical persisted even after the removal of less
reliable vessels from the data set. Therefore, these statistical “outliers”,
causing deviation from a Gaussian distribution, were not due to
measurement error (Supplemental Fig. 8) and came from a number of
different animals (Supplemental Fig. 9A–B), and hence, should be
considered as physiologically relevant.

By analyzing the distribution of arrival times at different cortical
depths, the laminar dependence of transit time heterogeneity, as
measured by the standard deviation of microvascular arrival times,
was also examined. Depth and layer-dependent trends in heterogeneity
(Fig. 5D–E) were similar to mean arrival time trends, albeit more pro-
nounced. The minimum heterogeneity covered from the layer 4–5
boundary to deeper in layer 5, around 500–800 microns in depth. The
middle cortical layers additionally displayed the least heterogeneity
on average. Removal of the long arrival time group as described above
reduced the standard deviation in the superficial layers, but the trend
of decreasing heterogeneity down to layer 5 persisted (Supplemental
Fig. 7E). Furthermore, the observed layer-dependence of heterogeneity
is not a result of the alignment of the data as it was observed in each
individual animal (Supplemental Fig. 9B).

Histogram analysis of the arrival time distributions within each layer
further revealed significant layer-dependent changes (Fig. 6). The distri-
butionwidths become smaller whenmoving deeper to themiddle corti-
cal layers. Two-sample Kolmogorov-Smirnov tests were applied to each
pair of layers and corrected with the Bonferroni correction for multiple
comparisons. Statically significant differences in the layer-dependent
distributions were observed for 7 out of 10 layer pairs, which further
supports laminar differences in the cortical microvasculature.

Peak time analysis and comparison with mean transit time

While bolus arrival time and peak time were the most precisely
estimated temporal measures derived from DyC-OCT, the mean transit
time (MTT) (or centroid) of the transit time distribution (TTD) is more
directly related to oxygen delivery (Jespersen and Ostergaard, 2012).
The MTT can be estimated from the deconvolution of two signals as
described in Eq. (5); however its correct interpretation requires connec-
tivity information. To estimate the MTT without a connectivity map, an
approximate arterial input function was derived from the average pro-
file of the superficial supplying artery with the shortest arrival time.
This assumed that the arterial input function was similar to that of
other supplying arteries due to the high speed and low dispersion
throughout the arterial macrovascular network.With this estimated ar-
terial input function, TTDs and MTTs were determined for each point
using Eq. (5). Any points with arrival times earlier than the input func-
tion were rejected from analysis as they could not physiologically be
connected to the chosen artery. Peak time, unlikeMTT, does not require
connectivity assumptions to accurately quantify. Supplemental Fig. 10
shows the relationship between bolus arrival time, peak time, and
estimated MTT. While MTT and peak time increase with arrival time
(Supplemental Fig. 10A–B), a stronger linear relationship (black line)
is observed between MTT and peak time (Supplemental Fig. 10C). In
summary, the linear relationship suggests that bolus peak time can be
viewed as a proxy for MTT.

In order to describe the laminar peak time distribution across cor-
tical depths (Fig. 7A), data from DyC-OCT experiments in 10 animals
were grouped either according to cortical depth (Fig. 7B) or accord-
ing to cortical layer (Fig. 7C), similar to arrival time. In summary, the
minimummean peak time was identified in layer 5, around 700–800
microns in depth (Fig. 7B–C). As with arrival time, the standard devi-
ations were smallest in layer 5 (Fig. 7E), around 600–800 microns
(Fig. 7D), indicating less heterogeneity. When averaged by layer,
the shortest peak times and least heterogeneity were again found
in the middle cortical layers. More rigorous analysis was also per-
formed by selecting only microvessels with self-consistent parame-
ter fits, as indicated by low intravessel standard deviations



Fig. 6. Arrival time distributions in each layer of the mouse somatosensory cortex. A) The arrival time distributions in microvasculature vary across cortical layers. The color indicates
relative arrival timewhere red is earlier (more arterial) and blue is later (more venous). The gray linemarks a 2 s arrival time in eachdistribution. Themiddle cortical layers shownarrower
distributions with fewer long arrival time vessels. B) The cumulative probability functions for the arrival time distributions of each layer shown in A) emphasize layer dependencies
with layers 4 and 5 showing the earliest and least heterogeneous arrival times. C) Two-sample Kolmogorov-Smirnov tests were applied to each pair of layers and corrected for multiple
comparisons using the Bonferroni correction and show that 7 out of 10 layer pairs are statistically significant. The number of asterisks denotes the level of statistical significance (* p b 0.05,
** p b 0.005, and *** p b 0.0005).
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(Supplemental Fig. 11). This analysis showed that the findings of
lowest mean peak times and standard deviations in the middle corti-
cal layers persisted even after the removal of less reliable vessels
from the data set.

Histogram analysis of the peak time distributions within each layer
was performed (Fig. 8). The distribution widths differed between
cortical layers, with layers 4 and 5 being the narrowest. Two-sample
Kolmogorov-Smirnov tests were applied to each pair of layers and
corrected with the Bonferroni correction for multiple comparisons.
Statically significant differences in the layer-dependent distributions
were observed for 9 out of 10 layer pairs, which further supports
laminar differences in the cortical microvasculature.
Summary

In summary, our data, analyzed a number of different ways, consis-
tently showed statistically significant laminar trends in both transit
time and heterogeneity. Overall, both arrival time (Fig. 5B–C) and
peak time (Fig. 7B–C) were shortest in the middle cortical layers, the
with shortest times generally observed around layer 5. Similar trends
were observed for the standard deviation of arrival time (Fig. 5D–E)
and peak time (Fig. 7D–E). Notably, while layer 5 tended to exhibit ear-
lier transit times and lower heterogeneity, statistical comparisons be-
tween layers 4 and 5, based either on average values (Figs. 5C, 7C) or
distributions (Figs. 6C, 8C), were not significant after correction formul-
tiple comparisons.
Discussion

Though the cortex is supplied and drained at the pial surface via a
single microvascular network (Blinder et al., 2013), neuronal activity
andmetabolism (Herman et al., 2013; Kennedy et al., 1976) vary across
the cortical column. The laminar adaptations of themicrovasculature to
the specific needs of the individual cortical layers are of importance not
only for understanding cerebral energetics, but also for the interpreta-
tion of BOLD fMRI. In particular, previous studies have shown that the
highlymetabolically active layer 4 possesses the highest capillary densi-
ty (Masamoto et al., 2004), arteriole branching density (Blinder et al.,
2013), and blood flow (Gerrits et al., 2000), and is also the site of the
earliest BOLD signals (Silva and Koretsky, 2002; Logothetis et al.,
2002; Lau et al., 2011; Siero et al., 2011; Yu et al., 2014). However,
transit time is a critical parameter that links hemodynamics to oxygen
extraction (Buxton, 2002); yet has beenunderstudied. Here,we demon-
strated, validated, and applied DyC-OCT specifically for the purpose of
studying the transit time distribution in microvascular networks. The
layer-resolved measurements in the mouse neocortex enabled by our
methods have led to a number of novel findings.

Laminar distribution of transit times

This study showed that the middle cortical layers of the somatosen-
sory cortex have the earliestmicrovascular transit times (Figs. 5C, 7C) as
well as the lowest microvascular transit time heterogeneity (Figs. 5E,
7E). In agreement with results from the somatosensory cortex, pooled



Fig. 7. Peak time as a function of depth in the mouse somatosensory cortex. By segmenting the peak time maps from 10 different mice, transit time trends associated with the microvas-
culaturewere revealed. Large vesselswere excluded based on size (exclusion criteria: radiusN 16 μm). A) Relative peak times inmicrovessels fromall 10mice are presented as a function of
depth. Each point is the mean peak time within a single microvessel. B) The mean peak time decreases with depth down to layer 5, around 700–800 microns followed by an increase in
layers 5–6. Estimated boundaries of different cortical layers are shown as dotted black lines and standard deviations are shown as red error bars. C)When layer-averaged peak timeswere
compared acrossmice, themiddle cortical layers (layers 4–5) displayed shorter peak times. Statistical testing used the Kruskal-Wallis test followed by Tukey’s Honestly Significant Differ-
ence test to account for multiple comparisons (** p b 0.005 and *** p b 0.0005). D-E) The intervessel standard deviation also decreasedwith depth, reaching a minimum in layer 5 around
600–800 microns.
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data from the posterior parietal and visual cortices (n= 8) also showed
decreases in arrival time, peak time, and their standard deviations from
the superficial to middle cortical layers (data not shown). The recently
published angioarchitecture of the mouse neocortex (Blinder et al.,
2013) offers clues to explain these observations (Supplemental
Fig. 12). In particular, the superficial cortical layers contain relatively
more venule branches and fewer arterioles (Blinder et al., 2013), leading
to a more venous-weighted microvascular network. By contrast, layer 4
and the middle cortical layers contain more arteriolar branches and
fewer venular branches (Blinder et al., 2013). Layer 4 has the largest
capillary density (Masamoto et al., 2004) and a higher flow as well
(Gerrits et al., 2000). Taken together, these data are consistent with
our observation that microvasculature in layer 4, with relatively more
arteriolar microvessels and fewer venular microvessels, should have a
shorter and more homogenous transit time distribution. The deeper
cortical layers show an increase in both transit time (Figs. 5C, 7C) and
heterogeneity (Figs. 5E, 7E), possibly due to lower flow speeds and
longer paths traversed by the arterioles that reach the deep cortex.
We assume that delays in arteriolar transit near the cortical surface,
where speeds are high (~10 mm/s) (Rovainen et al., 1993), do not ap-
preciably affect themore superficial transit time distributions. Reported
findings in cortical layer 6 should be interpreted cautiously due to the
smaller number of vessels (Supplemental Fig. 1) and animals (Supple-
mental Fig. 9) for that layer. The transit time characteristics of white
matter will be assessed in future studies.

Relationship to laminar BOLD

Laminar BOLD offers the exciting prospect of deciphering afferent
and efferent activity based on temporal or amplitude differences in
the BOLD signal in different layers (Yu et al., 2014). Since the BOLD
signal primarily depends on deoxyhemoglobin, it can be affected by
the complex interplay of CBF, CBV, and the cerebral metabolic rate of
oxygen consumption. In fact, laminar variations in arteriolar dilation
timing, with the earliest responses coinciding with the input cortical
layers, have been proposed as potential explanations for laminar BOLD
(Tian et al., 2010). However, it is also well-known that transit time is
an important contributor to the delay of the BOLD response after an
increase in blood flow (Marota et al., 1999). Our results highlight an
alternative explanation for laminar BOLD fMRI timing profiles based
only on the baseline transit properties of the microvasculature. In par-
ticular, our results show that themicrovascular transit times are earliest
in themiddle cortical layers, a fact that alone predicts earlier BOLDonset
times in themiddle cortical layers (Figs. 5B–C, 7B–C). Our results do not
contradict prior work, including, a recent elegant study that showed a
restructuring of the BOLD kinetics consistent with denervation induced
plasticity (Yu et al., 2014). Rather, our results highlight that alternative
explanations based on transit time distribution constraints should be
considered as potential contributors to the BOLD response kinetics.
Moreover, the notable variations in transit time distribution with
depth (Figs. 5A, 7A) suggest that accurate models of fMRI BOLD must
be founded on measurements across the entire cortical column, not
just the cortical surface.

Implications for oxygen delivery

The classical picture of oxygen delivery assumes a single capillary
with a maximal oxygen extraction inversely proportional to blood tran-
sit time (Renkin, 1985). However, heterogeneity of transit times among
capillaries, where present, can impede efficacy of oxygen extraction
(Jespersen and Ostergaard, 2012) relative to this classical model. Here
we suggest that laminar differences inmicrovascular transit time distri-
butions (Figs. 5A, 7A) imply differences in efficacy of oxygen extraction
between cortical layers. Moreover, we argue that these differences
enable the cortex to accommodate the diverse metabolic needs of
cortical layers through a single vascular supply.



Fig. 8.Peak time distributions in each layer of themouse somatosensory cortex. Thepeak time distributions inmicrovasculature vary across cortical layers. The color indicates relative peak
time where red is earlier (more arterial) and blue is later (more venous). The gray line marks a 4 s peak time in each distribution. The middle cortical layers show narrower distributions
with fewer long peak time vessels. B) The cumulative probability functions for the peak time distributions of each layer shown in A) emphasize layer dependencies with layers 4 and 5
showing the earliest and least heterogeneous peak times. C) Two-sample Kolmogorov-Smirnov tests were applied to each pair of layers and corrected for multiple comparisons using
the Bonferroni correction and show that 9 out of 10 layer pairs are statistically significant. The number of asterisks denotes the level of statistical significance (* p b 0.05, ** p b 0.005,
and *** p b 0.0005).
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Layer 4, the most metabolically active cortical layer (Chmielowska
et al., 1986;Wong-Riley, 1989; Smith et al., 1980), resides in themiddle
of cortex, though its blood supply must derive from the pial surface
network. Moreover, supplying arterioles diving from the pial surface
are known to lose oxygen through diffusion (Kasischke et al., 2010),
thus reducing the available oxygen supply to deeper cortical layers.
The cortex is known to cope with this design problem by directing
more blood flow to layer 4 than the other layers (Gerrits et al., 2000).
This might be achieved passively through the angioarchitecture
(Blinder et al., 2013), or actively through laminar regulation of arteriolar
tone (Tian et al., 2010). Aside from blood flow, our results suggest that
the cortex may also address this design problem, at least in part,
through tailoring transit time heterogeneity to different cortical
laminae. The laminar transit time distribution suggests that the cortical
microvasculature is adapted to optimize oxygen extraction efficacy
(low heterogeneity) in the middle cortical layers, perhaps even at the
expense of less efficacious oxygen extraction (high heterogeneity) in
other cortical layers (Figs. 5D–E, 7D–E). This finding is consistent with
the hypothesis that transit time heterogeneity is optimized to deliver
oxygen precisely where it is most needed.

Whether transit time heterogeneity is fully specified by the
angioarchitecture, or can be actively controlled (dependent on or
independent from blood flow) remains to be determined. The laminar
transit time distribution should be investigated during functional
activation (Rasmussen et al., 2015) as well as during microvascular
dysfunction. A more detailed picture of how metabolic needs are met
under these conditions will require additional, simultaneous measures
of flow and oxygenation.
Methodological assessment and future directions

A major advantage of the DyC-OCT technique is that, even though
the focal spot size degrades beyond ~0.5 mm in highly scattering
brain tissue (Helmchen and Denk, 2005), quantitative transit time
data are obtained at N 1 mm cortical depth. This is because the transit
times are derived from a time course (Fig. 2) that does not depend on
the precise image resolution. As long as microvessels can be resolved
and isolated in DyC-OCT, transit times are expected to be accurate.

Several limitations of the DyC-OCT methodology, as implemented
here, provide directions for future work. First, a notable feature of
Intralipid as a DyC-OCT contrast agent is that it seems to act as a plasma
tracer, as evidenced by similar transit kinetics to FITC-dextran (Fig. 4).
The layer-dependent blood plasma kinetics demonstrated here are like-
ly to be correlatedwith red blood cell flow kinetics. Nevertheless, future
DyC-OCT tracers can be developed that more closely mimic red blood
cell transit kinetics. Second, the best estimates of TTD are achieved
when the arterial input approximates an “impulse” or delta function.
For our injections, the tracer underwent temporal dispersion from the
site of intravenous injection to the cortical arterioles that feed the
capillary beds measured in this study. Future work will investigate
shorter bolus injections at alternative sites of administration in
closer proximity to the cerebral vasculature where transit times are
to be measured. Shorter boluses will also enable measuring further
into the tails of the TTD, though the short recirculation time in the
mouse would remain a limitation. Next, while DyC-OCT enables
simultaneous interrogation of large numbers of capillaries, it will
need modifications (i.e. closely spaced boluses) to quantify more
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rapid changes on the second scale, such as those during functional
activation (Tian et al., 2010).

DyC-OCT data remain somewhat ambiguous in the absence of de-
tailed vascular anatomy. A long transit time in a particular microvessel
branch could have one of two plausible interpretations; either
the branch is on the venular end of the branching tree, or the branch
is poorly perfused. Ascertaining which of these possibilities is true
requires determining branch order and comparing the particular
microvessel branch in question to other branches of similar order.
Thus, although this study investigated ensemble microvascular transit
time characteristics without regard to branching sequence, future
studies will investigate transit times in the context of compartment
(arteriolar, capillary, venular) and branching order determined from a
vascular graph (Blinder et al., 2013). We believe that this approach
would provide more direct insight into how transit time characteristics
relate to the angioarchitecture. Another related direction is to use data
derived from DyC-OCTwith advanced graphing and modelingmethods
to more accurately simulate blood flow through complexmicrovascular
networks.

The use of isoflurane anesthesia has the potential to affect the re-
ported DyC-OCT measurements. Isoflurane is a known vasodilator and
has been reported to significantly increase CBF in a dose-dependent
fashion (Duong et al., 2001), as compared to an awake state (Sicard
et al., 2003). Higher CBF due to the anesthesia could cause shorter
arrival and peak times, as compared to awake mice. If trends in transit
time are impacted by active regulation of vascular tone, anesthesia
could represent a confound (Masamoto and Kanno, 2012); anesthesia
would be less problematic if transit time trends are governed primarily
by the angioarchitecture. Future DyC-OCT studies could evaluate
the laminar differences in tracer kinetics, if any, under the effects of
isoflurane versus other anesthetic agents.

Last, it should be stated that standard deviations of individual arte-
riovenous transport functions could, in principle, have been determined
and used as a measure of heterogeneity here, as was done in previous
studies (Tomita et al., 1983; Ostergaard et al., 2015). Due to the unique
capillary-level resolution enabled by DyC-OCT,we opted to analyze var-
iability of transit time parameters amongst capillaries instead. Spatial
variability of transit times inmicrovasculature is indicative of heteroge-
neous supply patterns (Ostergaard et al., 2015).

Conclusions

DyC-OCT, amethod based on imaging the kinetics of an intravascular
contrast agent, was developed to study the transit time distribution in
microvascular networks in cross-section at the single-capillary level.
Dilution curves identical to those obtained with a fluorescent plasma
label at the cortical surface were shown, thus validating the technique.
Then, transit times were measured simultaneously across the entire
depth of the cerebral cortex in mice. The results demonstrate a clear
laminar distribution, with the shortest microvascular transit times and
heterogeneity observed in the middle cortical layers. These trends are
consistent with the known cortical angioarchitecture of the mouse,
and may help to explain the onset time kinetics of the BOLD fMRI
response. Moreover, they shed light on how a single vascular network
tailors its transit time distribution to meet diverse metabolic needs of
individual cortical layers. DyC-OCT affords a new perspective of cortical
microvascular networks, andmayprove to be a useful tool to investigate
heterogeneity in microvascular flow patterns that impact oxygen
extraction from the capillary bed.
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