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Abstract: We introduce and implement interferometric near-infrared
spectroscopy (iNIRS), which simultaneously extracts optical and dynamical
properties of turbid media through analysis of a spectral interference
fringe pattern. The spectral interference fringe pattern is measured using
a Mach-Zehnder interferometer with a frequency-swept narrow linewidth
laser. Fourier analysis of the detected signal is used to determine time-
of-flight (TOF)-resolved intensity, which is then analyzed over time to
yield TOF-resolved intensity autocorrelations. This approach enables
quantification of optical properties, which is not possible in conventional,
continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS
quantifies scatterer motion based on TOF-resolved autocorrelations, which
is a feature inaccessible by well-established diffuse correlation spectroscopy
(DCS) techniques. We prove this by determining TOF-resolved intensity
and temporal autocorrelations for light transmitted through diffusive fluid
phantoms with optical thicknesses of up to 55 reduced mean free paths
(approximately 120 scattering events). The TOF-resolved intensity is used
to determine optical properties with time-resolved diffusion theory, while
the TOF-resolved intensity autocorrelations are used to determine dynamics
with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse
optical methods and is suitable for in vivo tissue characterization. Moreover,
iNIRS combines NIRS and DCS capabilities into a single modality.
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1. Introduction

Near-infrared spectroscopy (NIRS) is a portable and noninvasive method of determining optical
properties, i.e. the absorption coefficient (µa) and reduced scattering coefficient (µ ′

s) of highly
scattering media [1]. Quantitative measures of µa and µ ′

s at one or more wavelengths provide
information about parameters such as blood oxygenation, tissue composition, and blood vol-
ume [2]. Furthermore, NIRS constitutes the basis for tools aimed at monitoring and imaging
of cerebral hemodynamics [3, 4], is widely used in neuroscience [5], and has the potential to
contribute to diagnosis of neurological conditions [6].

In conventional, continuous-wave (CW) NIRS, optical properties are extracted from near-
infrared light intensity attenuation by a turbid medium. However, quantification of optical
properties using CW NIRS requires a number of assumptions regarding scattering and path
length [3]. Therefore, robust measurement of µa and µ ′

s typically requires time domain or fre-
quency domain approaches, both of which add an additional dimension to the measurement
space. In particular, in time domain (TD) NIRS [2] a near-infrared picosecond light pulse is de-
livered to the tissue and the reflected optical intensity is analyzed by the detector as a func-
tion of time. The resulting temporal signal constitutes the photon distribution of time-of-flight
(DTOF). Subsequently, the values of µa and µ ′

s are determined from temporal features such as
the slope and the peak location of the measured DTOF [2,7]. However, most modern TD NIRS
instruments utilize expensive pulsed lasers and complex time-correlated single photon count-
ing detection [8], making widespread adoption of this technology challenging. In frequency
domain (FD) NIRS [9–11], the light intensity is sinusoidally modulated before it is delivered
to the tissue. Optical properties of the medium are then calculated from the amplitude attenua-
tion and phase shift of the detected wave. Though optical properties can be measured with FD
NIRS, the DTOF is typically not directly resolved, and modulation/demodulation schemes can
be complex and expensive.

While NIRS methods can determine hemoglobin concentrations and oxygen saturation,
blood flow is necessary to relate oximetry to metabolism. The dynamic properties of scatter-
ers [12–18] and blood flow in the retina, skin or brain [4, 19] can be determined from temporal
intensity fluctuations of reemitted coherent light. These techniques, which are commonly re-
ferred to as diffuse correlation spectroscopy (DCS) or laser speckle flowmetry, measure tempo-
ral light intensity autocorrelations to determine flow. In particular, they infer the decay of the
optical field autocorrelation, related to blood flow, from the intensity autocorrelation function
using the Siegert relation [20]. Subsequently the effective Brownian motion, which is related
to blood flow in living tissue [4], is extracted from diffusing wave spectroscopy (DWS) the-
ory [14] or the diffusion correlation equation (DCE) [17, 21–24]. However, there are major
downfalls of such an approach. Namely, field autocorrelations, particularly when averaged over
photon paths, depend not only on the motion of scatterers but also on the optical properties of
the diffusive medium. Thus, DCS analysis either assumes values of µa and µ ′

s, or derives these
values from other measurements. Furthermore, in DCS, the photon DTOF inside the medium
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is lost. Therefore, the measured dynamics are obtained from detected signal integrated over all
photon path lengths. In order to concurrently measure optical and dynamical properties, DCS
and FD NIRS can be combined into one instrument [25, 26]. However, this approach is limited
by the need for multiple instruments with different source-detector paths, as well as the inability
of DCS to provide time-of-flight resolved measurements.

To solve these problems, we have developed a novel, interferometric near-infrared spec-
troscopy (iNIRS) method, which simultaneously extracts the optical properties and time-of-
flight (TOF) resolved dynamics in turbid media from analysis of the spectral interference fringe
pattern. iNIRS measures the spectral interference pattern by using a Mach-Zehnder interferom-
eter (MZI) with a frequency-swept narrow linewidth light source. Since frequency and time are
conjugate variables, the time-of-flight difference between light propagating in both interferom-
eter arms can be resolved by Fourier-transforming the spectral or frequency-resolved interfer-
ence signal. Thus, intensity of light reemitted from the sample can be determined as a function
of photon time-of-flight. Therefore, in contrast to DCS, iNIRS can measure intensity fluctu-
ations as a function of time-of-flight. Such an approach has several advantages over typical
NIRS/DCS techniques. Notably, iNIRS preserves the DTOF, potentially provides shot-noise
limited sensitivity, and most importantly, concurrently determines optical properties and dy-
namics of the turbid medium using a single optical path. Moreover, analysis of the temporal
intensity autocorrelation for a given photon time-of-flight greatly simplifies quantification of
scatterer dynamics compared with DCS.

The simultaneous measurement of the photon DTOF and TOF-resolved intensity autocor-
relation functions of diffuse light were initiated by Yodh et al. [18], who developed pulsed
diffusing-wave spectroscopy, in which the TOF-resolved autocorrelation function is meas-
ured using nonlinear optical gating. In this approach, however, the path length difference be-
tween a reference and sample arm is controlled by an optical delay line. Shifting the reference
path repeatedly by tens of centimeters over a few microseconds is challenging. This problem
can be solved by employing interferometry, as opposed to nonlinear gating, combined with
a frequency-modulated, narrow bandwidth light source [27–30]. In particular, Tualle et al. de-
veloped an optical setup with a laser swept at a frequency of 10 Hz [27], which was later
improved to sweep rates of up to 300 Hz [28]. Recently, another method called frequency-
modulated light scattering interferometry was introduced [29, 30]. This technique operates at
a rate of 800 Hz. Since multiply scattered light from many samples decorrelates over this time
scale, a fitting procedure was used to determine dynamics as well as optical properties from
a one-dimensional measurement. By operating more than two orders of magnitude faster than
previous techniques, where one laser sweep (∼10 µs) is smaller than the characteristic decor-
relation time, even after multiple scattering events, the method we present here can acquire
a two-dimensional (DTOF and autocorrelation decay time) measurement set to determine scat-
terers’ dynamics and optical properties independently. Thus, our method is not limited to static
samples and paves the way for real-time determination of the optical properties and blood flow
in tissue in vivo.

Optical coherence tomography (OCT) [31–34] uses low-coherence interferometry [35, 36]
to noninvasively produce cross-sectional images of biological systems with a resolution of
a few micrometers and imaging range of several millimeters. Low-coherence interferometry,
in this regime, either in the time- or Fourier-domain (swept source or spectral domain), was
also used for imaging objects embedded in scattering media using ballistic photons [37, 38],
analyzing backscattering as a function of path length using diffusion theory [39], quantifying
path length-resolved dynamic properties of diffusive particles [40, 41], and determining opti-
cal properties [42, 43]. However, there are major differences between swept source OCT and
iNIRS. The goal of iNIRS is to measure optical and dynamical properties of turbid media.
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Therefore, iNIRS uses a laser with an instantaneous linewidth and tuning range narrower by
several orders of magnitude than in typical OCT systems. This enables measuring distinctly
longer photon path lengths (of up to tens of centimeters) at the cost of reduced resolution (of
the order of millimeters). Though the light source used here for iNIRS is not suitable for OCT
applications, it is appropriate for measuring the photon DTOF in highly scattering media, prob-
ing path lengths orders of magnitude higher than what can be assessed using OCT. In other
words, iNIRS takes an advantage of multiply scattered photons, which are usually rejected, and
most importantly unwanted, in low-coherence interferometry. Moreover, the expression for the
instrument response function, governing the capability of iNIRS to resolve the DTOF, departs
from the conventional expression for OCT axial resolution. Finally, iNIRS, as implemented
here with a single source and detector, is not an imaging or tomography method.

In this paper we lay the theoretical framework for iNIRS and implement it experimentally,
simultaneously measuring the photon distribution of time-of-flight and TOF-resolved autocor-
relations in turbid media. This enables quantitative determination of both optical properties and
scatterer dynamics. We prove this by analyzing the DTOFs of diffusive fluid phantoms with
optical thicknesses, defined as geometrical thickness multiplied by µ ′

s, of up to 55 transport
mean free paths. The optical properties of the phantoms are subsequently determined from the
measured DTOFs using the diffusion equation, while dynamic properties of the scatterers are
extracted from path length-resolved intensity fluctuations using DWS theory.

Due to relatively large number of symbols and equations, associated with experimental
measurements, the diffusion equation (DE), and DWS theory, we use the following naming
conventions. Quantities related to a particular theory or technique are marked by an appropri-
ate superscript (DE, DWS, iNIRS), e.g. the scattered light intensity measured using the iNIRS
system is denoted as I (iNIRS)

s . The (possibly) biased estimates of the experimental quantities
are marked by a hat sign. For example Î (iNIRS)

s denotes the estimated value of I (iNIRS)
s (sec-

tion 4). The noise-bias-corrected experimental estimates are denoted using tilde, i.e., the symbol
Ĩ (iNIRS)
s stands for the value of the noise-bias-corrected version of Î (iNIRS)

s .

2. Theory and system design considerations

In this section we present the principles and limitations of iNIRS. We first examine the re-
lationship between the spectral interference pattern, DTOF and TOF-resolved fluctuations of
a turbid medium (secs. 2.1 and 2.2). Afterwards, we describe a procedure for extracting the op-
tical and dynamical properties of a turbid medium (sec. 2.3) from measurement of the spectral
interference fringe pattern (secs. 2.4 and 2.5).

2.1. Relationship between the optical field and the distribution of photon time-of-flight

The statistical properties of the optical field are characterized by second-order optical coher-
ence theory [44–46]. In this framework, the wide-sense stationary and ergodic optical field at
position r and time ts can be represented as an analytic signal U(r, ts), which can be written as
the Fourier integral over optical frequencies, ν :

U(r, ts) =
∫ ∞

−∞
U (r,ν)exp [−2πiνts]dν . (1)

In order to express the iNIRS signal in terms of the optical field, let us associate the functions
Ur(r, ts) and Us(r, ts) with the reference and sample beams of the MZI, respectively. Then, the
iNIRS signal, which is the spectral fringe pattern registered at the exit of the MZI is given by
spectral interference law [45, 46] as:

S (r,ν) = Sr(r,ν)+Ss(r,ν)+2Re [Wrs(r,ν)] , (2)
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where
Wi j(r,ν)δ (ν −ν ′) =

⟨
U ∗

i (r,ν)U j(r,ν ′)
⟩

(3)

denotes the cross-spectral density function (power spectrum) of the light field at position r and
optical frequency ν . Furthermore Si(r,ν) =Wii(r,ν) denotes the spectral density of the optical
field Ui(r, ts) and ⟨. . .⟩ stands for ensemble averaging.

According to the Wiener-Khintchine theorem [45,47,48], the cross-spectral density function
Wi j(r,ν) is a Fourier transform

Wi j(r,ν) =
∫ ∞

−∞
Γi j(r,τs)exp [2πiντs]dτs (4)

of the mutual coherence (field autocorrelation) function

Γi j(r,τs) =
⟨
U∗

i (r, ts)U j(r, ts + τs)
⟩

ts
= lim

T→∞

1
2T

∫ T

−T
U∗

i (r, ts)U j(r, ts + τs)dts, (5)

where τs denotes the delay time between the two arms of the MZI. On the grounds of Eq. (4)
and Eq. (5) the spectral fringe pattern S (r,ν) can be converted to an autocorrelation by using
an inverse Fourier transformation. This procedure yields:

I(r,τs) = Γr(r)+Γs(r)+Γrs(r,τs)+Γsr(r,τs), (6)

where Γi(r) = Γii(r,0). The first two terms on the right-hand side of Eq. (6) constitute the
DC term ΓDC(r) = Γr(r)+Γs(r), which does not carry useful information about the photon
DTOF. Γr(r) is the light intensity from the reference arm of the interferometer, while Γs(r) is
the light intensity from the sample arm. The value of Γr(r) can be determined in a separate
measurement (when the sample arm is blocked) and subsequently subtracted from Eq. (6).
Similarly, the value of Γs(r) can be determined by blocking the interferometer reference arm,
though it is small for most diffuse samples. Alternatively, a dual-balanced detector may be used
to eliminate ΓDC(r). This leaves the sum of cross-terms, i.e. Γrs(r,τs)+Γsr(r,τs). Both of these
terms represent the correlation function between the reference optical field Ur(r, ts) of the light
which travels a fixed distance, and the optical field Us(r, ts) of the light which emerges from the
turbid medium. Therefore, the cross-terms can be used to determine the amplitude and phase
of Us(r, ts) and in turn to recover information about the photon time-of-flight distribution or, in
other words, intensity as a function of τs. This time-resolved photon distribution (DTOF), can
be converted into a path length-resolved photon distribution by taking into account the speed of
light in the medium.

However, according to Eq. (2), only the real part of the cross-spectral density is measured.
The corresponding sum of cross-terms is Hermitian, since Γrs(r,τs) =Γ∗

sr(r,−τs), which shows
that the cross-terms constitute a pair of mirrored components. Thus, unique information about
the DTOF is limited to either positive or negative values of τs. The effect of mirror terms re-
duces the usable TOF range by a factor of two. Nonetheless, the TOF range can be recovered
by reconstructing the phase of the cross-spectral density function such that its Fourier transfor-
mation does not contain overlapping mirror terms [49].

We shall now calculate Γ(iNIRS)
rs (r,τs) measured using the iNIRS system at time td , included

henceforth as a third argument to all functions defined in Eqs. (1)–(6). For this purpose we
assume that the optical components of the reference arm of the interferometer introduce a con-
stant relative attenuation, αr, a random time- and position-dependent phase shift, φr(r, td), and
a delay, τr, of the optical field at the interferometer entrance, denoted by Uinc(ts). The time-
dependence of the phase shift φr(r, td) accounts for possible interferometer drift. Let us further
assume that the optical field of the light emerging from the turbid medium is composed of N
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ence and multiply scattered sample light fields. The real part of the cross-spectral density
function is measured by a detector at the exit of the Mach-Zehnder interferometer and used
to determine the autocorrelation function [see Eq. (4)].

uncorrelated photon paths, each of length ln = υτs,n, where n = 1, . . . , N and υ denotes the
speed of light in the medium. Though not explicitly a function of r, the photon paths depend on
the detector position, in general. The optical field associated with each photon path can be de-
scribed by the relative light attenuation αs,n(r), phase shift φs,n(r, td) and delay of τs,n [Fig. 1].
Under these assumptions the reference and sample fields, i.e. Ur(r, ts, td) and Us(r, ts, td), can
be written as

Ur(r, ts, td) = αr exp [iφr(r, td)]Uinc (ts − τr) , (7)

Us(r, ts, td) =
N

∑
n=1

αs,n(r)exp [iφs,n(r, td)]Uinc
(
ts − τs,n

)
. (8)

Photon paths that do not contribute to the sample field at the detector are assigned a corre-
sponding αs,n(r) value of zero. After substituting Eq. (7) and Eq. (8) into definition (5), with
the understanding that averaging is performed over the measurement time, one obtains:

Γ(iNIRS)
rs (r,τs, td) = αr

N

∑
n=1

αs,n(r)exp
[
−i∆φrs,n(r, td)

]
Γinc

(
τs − τ ′s,n

)
, (9)

where
∆φrs,n(r, td) = φr(r, td)−φs,n(r, td)

and
Γinc(τs) = ⟨U∗

inc (ts)Uinc (ts + τs)⟩ts , (10)

stands for the mutual coherence function of the incident optical field, and τ ′s,n = τs,n − τr. Note
that although the τ ′s,n that contribute to the summation in Eq. (9) depend on detector position,
the explicit r dependence has been incorporated into αs,n(r). We have assumed that attenuations
αr and αs,n(r) are time-independent. Provided that the time-scale of fluctuations of the phase
component [23], exp [−i∆φrs,n(r, td)], is larger than the measurement time, this term can be
brought outside the averaging brackets in Eq. (9).
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Expression (9) shows that for fixed td , Γ(iNIRS)
rs (r,τs, td) is a weighted sum of the contributions

from each photon path length. Moreover, Γ(iNIRS)
rs (r,τs, td) is a complex function, proportional

to the sample field. However, random phases lead to the interference of scattered wavefronts,
which in turn, generates a speckle pattern [50–52]. To overcome the destructive effect of speck-
les, the photon TOF distribution is obtained by temporal averaging:

I (iNIRS)
s (r,τs) =

⟨∣∣∣Γ(iNIRS)
rs (r,τs, td)

∣∣∣2⟩
td

, (11)

where the subscript td indicates averaging over consecutive measurements. To achieve speckle
reduction, the time window for averaging must be much larger than the speckle correlation
time. In order to evaluate this average one substitutes expression (9) into Eq. (11) and obtains:

I (iNIRS)
s (r,τs) = α2

r

N

∑
n=1

N

∑
m=1

αs,n(r)αs,m(r)Γ∗
inc(τs − τ ′s,n)Γinc(τs − τ ′s,m)

×⟨exp{i [∆φrs,n(r, td)−∆φrs,m(r, td)]}⟩td
.

(12)

Phase components exp [i∆φrs,n(r, td)] are assumed to be random processes of zero mean. Fur-
thermore, phase components corresponding to different photon paths are assumed to be statis-
tically uncorrelated [53]. Hence, the time-averages of phase components yield non-zero contri-
butions to the double summation on the right-hand side of Eq. (12) for n = m only. Therefore,
expression (11) reduces to

I (iNIRS)
s (r,τs) =

N

∑
n=1

Is,n(r)
∣∣Γinc(τs − τ ′s,n)

∣∣2 , (13)

where Is,n(r) = α2
r α2

s,n(r) is proportional to the intensity for the n-th photon path.
If the N photon paths can be treated as a continuous integral over τs, expression (13) can be

generalized to the following form:

I (iNIRS)
s (r,τs) =

∞∫
−∞

dτ ′s Is(r,τ ′s)I0(τs − τ ′s), (14)

where
I0(τs) = |Γinc(τs)|

2 (15)

stands for the instrument response function (IRF). In practice, the instrument response function
may be delayed (i.e. shifted in τs) to achieve correspondence between Is and DTOFs predicted
by diffusion theory. The particular issue of time reference is discussed further under section 4.

Equation (14) shows that photon DTOF measured using iNIRS is convolved with the IRF,
which depends on the mutual coherence function of the incident optical field, Γinc(τs). From
the definition in Eq. (4), Γinc(τs) is the inverse Fourier transform of the light source spectrum:

Γinc(τs) = F−1 {Sinc(ν)} , (16)

where F is the Fourier operator. As a consequence, Γinc(τs) depends on the spectral properties
of the light source. For the idealized case of the light source with an infinite-width spectrum,
Γinc(τs) = δ (τs). Hence, the resulting intensity distribution I (iNIRS)

s (r,τs) would accurately de-
scribe the DTOF. On the other hand, for a finite-width spectrum of the incident optical field,
Γinc(τs), is not a delta function. Therefore, the distribution of I (iNIRS)

s (r,τs) is blurred. This
effect is sketched in Fig. 2.
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Fig. 2. Dependence of measured photon TOF distribution on the instrument response func-
tion (IRF), proportional to the modulus-squared of the mutual coherence function (field
autocorrelation) of the incident optical field, Γinc(τs). (A) For a very narrow mutual co-
herence function (infinite-width spectrum of incident light), the measured TOF distribution
I (iNIRS)
s (r,τs) precisely reflects the actual photon DTOF Is(r,τs). (B) The measured pho-

ton DTOF is blurred when the mutual coherence function of the incident optical field is not
a delta function (finite-width spectrum of incident light).

2.2. Optical field fluctuations and the dynamic properties of the turbid medium

Light propagating in a turbid medium is scattered from dynamic particles that impart frequency
shifts to the detected light. This leads to fluctuations and hence, decorrelation of the complex
optical field over time, a phenomenon which forms the basis of dynamic light scattering-based
methods. Thus, by analyzing the fluctuations of the sample field Γ(iNIRS)

rs (r,τs, td), one can
determine the dynamic properties of scatterers. This requires knowledge of the first-order nor-
malized optical field autocorrelation function:

g(iNIRS)
1 (r,τs,τd) =

G(iNIRS)
1 (r,τs,τd)

G(iNIRS)
1 (r,τs,0)

, (17)

where
G(iNIRS)

1 (r,τs,τd) =
⟨

Γ∗(iNIRS)
rs (r,τs, td)Γ

(iNIRS)
rs (r,τs, td + τd)

⟩
td
. (18)

The autocorrelation function defined in Eq. (17) depends on the two time parameters: τd and τs.
Here, τd has to be explicitly distinguished from τs, since the time scale of the former is related
to dynamics or motion, while the latter refers to the delay between the two interferometer arms
or photon time-of-flight.

The function g(iNIRS)
1 (r,τs,τd) quantifies the temporal autocorrelation between the optical

fields scattered by the sample at time lag τd and the time-of-flight τs. This function is distin-
guished from Γ(iNIRS)

rs (r,τs, td), which is the autocorrelation of the reference and sample fields.
In our experiments, Γ(iNIRS)

rs (r,τs, td) is determined by Fourier analysis of the spectral interfer-
ence fringe pattern, while the information about the motion of scatterers is determined digitally
by estimating g(iNIRS)

1 (r,τs,τd). Thus, we require that the measurement time is much smaller
than the time scale of decorrelation caused by sample dynamics. Provided that this condition
holds, iNIRS is able to take a ”snapshot” of the sample field.
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By substituting expression (9) into definition (18) and performing the same steps as used in
derivation of Eq. (13) one obtains

G(iNIRS)
1 (r,τs,τd) = α2

r

N

∑
n=1

α2
s,n(r)⟨exp [i∆Φrs,n(r, td ,τd)]⟩td

∣∣Γinc(τs − τ ′s,n)
∣∣2 , (19)

where
∆Φrs,n(r, td ,τd) = ∆φrs,n(r, td)−∆φrs,n(r, td + τd).

By noting that
G1,n(r,τd) = Is,n(r)⟨exp [i∆Φrs,n(r, td ,τd)]⟩td

is known from DWS as the first-order field autocorrelation function of the n-th photon path,
expression (19) can be rewritten as

G(iNIRS)
1 (r,τs,τd) =

N

∑
n=1

G1,n(r,τd)
∣∣Γinc(τs − τ ′s,n)

∣∣2 . (20)

The above result shows that the sample field, Γ(iNIRS)
rs (r,τs, td) will decorrelate over time at

a rate dependent on the phase decorrelation along individual paths.
The right hand side of Eq. (20) can be now generalized to a continuous integral over τs

[similar to Eq. (14)]:

G(iNIRS)
1 (r,τs,τd) =

∞∫
−∞

dτ ′sG1(r,τ ′s,τd)I0(τs − τ ′s). (21)

Equation (21) relates the conventional field autocorrelation function to the one measured us-
ing the iNIRS method. Since Eq. (21) is a convolution, iNIRS enables windowing of the
TOF-resolved autocorrelation function G1(r,τs,τd) with the instrument response function
(IRF). In particular, for Γinc(τs) = δ (τs), relation (21) reduces precisely to the results derived
in [13,18]. Therefore, G(iNIRS)

1 (r,τs,τd), can be used to extract TOF-resolved dynamic proper-
ties of highly scattering samples.

To relate the scattered field autocorrelation function to measured DTOF I (iNIRS)
s (r,τs) it

is sufficient to evaluate G(iNIRS)
1 (r,τs,τd) at τd = 0. In this case, Eq. (21) reduces to expres-

sion (14).
The direct calculation of the function g(iNIRS)

1 (r,τs,τd) from measurements of
Γ(iNIRS)

rs (r,τs, td) may be sensitive to phase instabilities in the iNIRS system [cf. Eq. (19)].
Therefore, in order to determine g(iNIRS)

1 (r,τs,τd) we use the normalized intensity autocorrela-
tion function (the second-order field autocorrelation),

g(iNIRS)
2 (r,τs,τd) =

G(iNIRS)
2 (r,τs,τd)[

G(iNIRS)
1 (r,τs,0)

]2 , (22)

with

G(iNIRS)
2 (r,τs,τd) =

⟨∣∣∣Γ(iNIRS)
rs (r,τs, td)

∣∣∣2 ∣∣∣Γ(iNIRS)
rs (r,τs, td + τd)

∣∣∣2⟩
td

.

Then, as in typical DCS experiments, the first-order field autocorrelation function can be
extracted from the intensity autocorrelation by using the Siegert relation [20]:

g(iNIRS)
2 (r,τs,τd) = 1+β

∣∣∣g(iNIRS)
1 (r,τs,τd)

∣∣∣2 , (23)
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where the parameter β ∈ (0, 1] accounts for the number of measured speckles [23]. According
to definition (17), g(iNIRS)

1 (r,τs,τd)→ 1 as τd → 0. Thus, the value of the parameter β can be
calculated from the intensity autocorrelation function, g(iNIRS)

2 (r,τs,τd), by using the following
expression

β = g(iNIRS)
2 (r,τs,0)−1. (24)

Alternatively, the value of β can be determined from the following relation

β =
G(iNIRS)

2 (r,τs,0)−G(iNIRS)
2 (r,τs,∞)

G(iNIRS)
2 (r,τs,∞)

, (25)

since g(iNIRS)
1 (r,τs,τd)→ 0 for τd → ∞.

In summary, information about sample dynamics can be distinguished from optical properties
(µa,µ ′

s) when the following two conditions are met. The first condition is that the characteristic
field autocorrelation decay time τd is much greater than measurement time. The second condi-
tion, discussed in greater detail below, is that the light source coherence time is larger than the
required photon time-of-flight range.

2.3. Relation between optical and dynamical properties and the diffuse optical field autocor-
relation

The optical properties of a turbid medium can be extracted from experimentally measured
values of the function I (iNIRS)

s (r,τs) using the diffusion approximation to the radiative trans-
fer equation (RTE) for the fluence rate [54, 55]. In particular, for a narrow collimated pulse of
light normally incident (propagation along the z-axis) on a homogeneous slab of thickness L
and by imposing the extrapolated boundary condition, in which the fluence rate is equal to zero
at each extrapolated boundary, one obtains [7, 56, 57]:

I(DE)
s (ρ,L,τs) =

exp [−µaυτs]

2πσ 2
t τs

√
4Dπυτs

exp
[
− ρ2

2σ2
t

] ∞

∑
m=−∞

{
(L− z+,m)exp

[
−
(L− z+,m)

2

4Dυτs

]

− (L− z−,m)exp
[
−
(L− z−,m)

2

4Dυτs

]}
,

(26)

where υ is the speed of light in the slab, ρ denotes the Euclidean distance from the z-axis
(source-detector separation), D = 1

3µ ′
s

stands for the diffusion coefficient, and σ2
t = σ2

s +σ2
d +

2Dυτs. The finite detector size as well as the extended light source were incorporated by con-
volving the original solution given in [7, 56, 57] with two Gaussian functions, describing the
collimated modes from the source and detector fibers. These functions are assumed to have
a standard deviations of σd and σs, respectively. Furthermore,

z+,m = 2m(L+2ze)+ z0,

z−,m = 2m(L+2ze)−2ze − z0

denote the locations of the isotropic point sources [Fig. 3] required to satisfy extrapolated
boundary conditions. In the above equations z0 = 1/µ ′

s denotes the depth at which all of the
incident photons are diffuse and ze = 2AD is the location of the extrapolated boundary. The
coefficient A is defined as

A =
1+R(n)
1−R(n)

,
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Fig. 3. Geometry for the calculation of the time-resolved transmittance through a homoge-
neous turbid slab (after [7, 57]). The locations of the first positive (blue dots) and negative
(red dots) isotropic point sources are shown.

where R(n) denotes the reflection coefficient [57]:

R(n) =−1.4399n−2 +0.7099n−1 +0.6681+0.0636n,

which depends on the refractive index mismatch n between the diffusive medium and its sur-
roundings. The solution given in Eq. (26) does not depend on θ due to cylindrical symmetry.

Equation (26) represents the probability per unit time of detecting photons emerging from
a diffusive homogeneous slab at time τs at the detector located a distance ρ from the z-axis. The
function I(DE)

s (ρ,L,τs) therefore represents the photon distribution of time-of-flight, measured
in transmission geometry. The infinite summation in Eq. (26) is over the virtual isotropic point
sources shown in Fig. 3. In this work we truncated this series at m =±20.

On the other hand, the dynamic properties of the scatterers can be extracted from the first-
order field autocorrelation function G(iNIRS)

1 (r,τs,τd) using DWS theory [14, 58] or the diffu-
sion correlation equation [17, 22–24]. In the DWS framework, the normalized TOF-resolved
first-order field autocorrelation function of a suspension of identical noninteracting particles
with a Brownian diffusion coefficient DB does not depend on r and is given by

g(DWS)
1 (τs,τd) = exp

[
− 1

3 k2µ ′
s
⟨
∆r2(τd)

⟩
υτs
]
, (27)

where k is the wave number of light in the sample. Furthermore,
⟨
∆r2(τd)

⟩
is the time-

dependent mean-square displacement of the scatterers. In particular, for Brownian diffusion⟨
∆r2(τd)

⟩
= 6DBτd . It follows therefore that the autocorrelation function decays exponentially

and the decay rate, ξ = 2k2DBµ ′
sυτs is proportional to the product of DB, µ ′

s, and photon path
length υτs.

DCS measurement techniques are unable to determine dynamic properties independently of
optical properties for two reasons. First, a weighted average of Eq. (27) over the photon time-
of-flight distribution, which depends on medium optical properties, must be performed in DCS
to account for the lack of TOF resolution. Second, the decay rate of the TOF-resolved autocor-
relation in Eq. (27) depends on µ ′

s. iNIRS addresses the first issue directly by enabling TOF
resolution, and addresses the second issue indirectly by quantifying scattering independently
through DTOF analysis.
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Lastly, we note that, though it was not explicitly utilized here, DCE theory [17, 21–24] pro-
vides unnormalized autocorrelation functions (equivalent to normalized autocorrelation func-
tions and intensity DTOFs) in a single framework.

2.4. Measurement of spectral interference pattern

Though not treated above in the theory section, a number of practical experimental issues arise
in measuring the spectral interference pattern. In iNIRS the spectral interference fringe pattern
is measured using a rapidly tunable laser, though other approaches such as high-resolution spec-
trometers are possible [41, 59]. For iNIRS, as shown in Fig. 4, one may visualize the spectral
interference pattern as being generated in the time domain from the beating of the frequency
sweep and a copy of the frequency sweep, delayed in time.

For this series of experiments, the wavelength of a short-cavity distributed feedback laser is
swept in time by modulating the drive current. However, in vivo applications require fast tuning
repetition rates or sweep rates, ft = 2 fr, where fr = 1/tm is the laser modulation frequency and
tm is the measurement time interval. As tuning frequency increases, the dominant mechanism of
laser wavelength tuning switches from thermal to carrier density modulation. This leads to a re-
duction in the tuning parameter (given in GHz/mA), which in turn degrades the tuning range,
∆ν [60]. As a consequence the time resolution, δτs, becomes worse, as will be shown in sec-
tion 2.5. An increasing laser tuning speed (given in GHz/s) diminishes the detection sensitivity
due to a lower number of detected photons per sweep [34] and also broadens the instantaneous
laser spectral linewidth, δν [61]. Although the sensitivity can be recovered by increasing the
number of consecutive measurements and averaging, the linewidth broadening irreversibly de-
creases the time-of-flight measurement range or coherence time, τc. Dependence of the time
resolution and measurement range on the parameters of the light source are further discussed
in section 2.5.

For the above reasons, the laser sweep rate cannot be arbitrarily increased. For our exper-
iments, we chose a laser sweep rate of 100 kHz, leading to a sweep time or measurement
time tm/2 of approximately 10 microseconds. Due to the assumption that decorrelation over
the sweep is negligible, the current iNIRS technique can be applied to samples for which the
intrinsic decorrelation time is greater than ten microseconds, which is a typical value in biologi-
cal tissue for source-detector separations not larger than 2 cm [23], although decorrelation time
depends on time-of-flight in general. Due to the complex tuning mechanisms and limited tun-
ing bandwidth, such fast sweep rates were achieved with a sinusoidal (nonlinear) modulation.
As shown in Fig. 4(c), nonlinear tuning of the laser wavelength leads to a non-uniform beat
frequency. However, a Fourier transform relationship assumes that a single beat frequency cor-
responds to a single time-of-flight. Thus, if not compensated, the non-uniform beat frequency
invalidates the Fourier analysis used in iNIRS. For this study, the nonlinear sweep was com-
pensated by means of a recalibration procedure before applying Fourier transformation to the
detected signal, as described in section 4.

2.5. Resolution and measurement range

Let us now briefly discuss the impact of light source tuning parameters on the TOF resolu-
tion of the iNIRS system. One may distinguish two measurement stages in iNIRS. The first
is a time series of measurements of the instantaneous optical field transmission of the sample,
denoted by Γ(iNIRS)

rs (r,τs, td) [cf. Eq. (9)], while the second uses time-averaged (over td) values

of
∣∣∣Γ(iNIRS)

rs (r,τs, td)
∣∣∣2 to obtain the photon DTOF I (iNIRS)

s (r,τs).
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Fig. 4. Measurement of the spectral interference pattern and a simple illustration of a linear
versus nonlinear frequency sweep in iNIRS. A) The sample placed in the interferometer
sample arm delays the optical field from the frequency-swept light source by a time τs,0.
Practically, this delay must be shorter than the coherence time, which in turn is less than
the sweep time of our laser. B) Due to the fact that the laser frequency is changed over
time, or ”swept”, photons which take a longer time to travel through one interferometer
arm will generate a larger beat frequency upon interference. Hence for a linear sweep,
iNIRS encodes time delay, τs,0 as beat frequency. C) For a nonlinear sweep, delay is still
encoded as beat frequency; however the beat frequency is no longer constant versus time.
This nonlinearity in the beat frequency can be accounted for through a numerical recalibra-
tion procedure described in section 4. Because time delay is encoded in the beat frequency,
the value of τs,0 can be determined by inverse Fourier-transforming the electronic interfer-
ence signal (D).

To interpret the physical meaning of Γ(iNIRS)
rs (r,τs, td) we rewrite Eq. (9) as:

Γ(iNIRS)
rs (r,τs, td) = Γrs(r,τs, td)∗Γinc(τs), (28)

where

Γrs(r,τs, td) = αr

N

∑
n=1

αs,n(r)exp [−i∆φrs,n(r, td)]δ
(
τs − τ ′s,n

)
and ∗ denotes convolution with respect to τs.

According to Eq. (28), the measurement of Γ(iNIRS)
rs (r,τs, td) is equal to the optical field

transmission, convolved with Γinc(τs). Thus, if an infinitely narrow pulse, or delta function,
were incident on the sample from the source position, the measured electric field response
at the detector would be given by Γrs(r,τs, td). Thus Γrs(r,τs, td) may be considered as the field
”impulse response” of the medium describing the cumulative phase shifts, attenuations, and
time shifts of the various photon paths. The interpretation of the convolution expression (28) is
that the resolution for measuring the field transmission function is determined by the shape of
the function Γinc(τs) [cf. Eq. (16)]. In particular, for a Gaussian with a frequency bandwidth of
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∆ν at the full width at half maximum (FWHM), centered at νc,

Sinc(ν) = exp

[
−4ln(2)

(
ν −νc

∆ν

)2
]
, (29)

which due to the positivity of ∆ν yields

Γinc(τs) =

√
π∆ν

2
√

ln(2)
exp

−( π∆ν τs

2
√

ln(2)

)2
exp [−2πiνcτs] . (30)

The modulus of the above is a Gaussian distribution with a standard deviation of σ =

√
2ln(2)
π∆ν .

The FWHM of such a Gaussian function defines the TOF resolution δτs of the measured
Γ(iNIRS)

rs (r,τs, td). By using the well-known relationship between the FWHM of a Gaussian
function and its standard deviation σ ,

FWHM = 2
√

2ln(2)σ ,

one obtains an explicit equation for δτs:

δτs =
4ln(2)
π∆ν

=
4ln(2)

π
λ 2

c

υ∆λ
, (31)

where λc is the laser central vacuum wavelength and ∆λ = λ 2
c ∆ν/υ is the wavelength

bandwidth. Note that Γinc(τs) is analogous to the commonly used point spread function in
OCT [32, 33], excepting the factor of 2 difference in width due to the single-pass geometry in
iNIRS.

In general the measured Γ(iNIRS)
rs (r,τs, td) will be affected by speckle (due to the random

phases of paths adding together within a resolution element). To experimentally measure the
photon time-of-flight distribution, proportional to time-resolved intensity, the modulus-squared
of the field transmission function is averaged over time [see Eq. (11)]. This time-averaged
intensity can then be compared to theoretical DTOFs determined from time-resolved diffusion
theory [cf. Eq. (26)], to infer bulk optical properties. Taking this time-averaging into account,
the time-of-flight resolved intensity measured by iNIRS is given by [cf. Eq. (14)]:

I (iNIRS)
s (r,τs) = Is(r,τs)∗ I0(τs), (32)

The interpretation of this expression is that the resolution for estimating the DTOF is deter-
mined by the shape of I0 = |Γinc(τs)|2, which determines IRF [cf. Eq. (15)]. If Γinc(τs) is Gaus-
sian, so is |Γinc(τs)|2, but it is narrower by a factor of

√
2. Therefore the resolution, δτs,Is of

DTOF is improved by a factor of
√

2 when measuring the time-averaged intensity [cf. Eq. (32)],
as compared with the instantaneous field transmission given in expression (31), i.e.:

δτs,Is =
δτs√

2
.

Another important consideration for frequency tunable or swept lasers in iNIRS is the mea-
surable TOF range. For a stationary (not tuned) laser, the coherence time (or length), inversely
proportional to the spectral linewidth, defines the range of time delays (or path delays) that can
be measured using interferometry. More precisely, the coherence function, the inverse Fourier
transform of the spectrum, defines the fringe visibility (Michelson contrast) as a function of
time delay [44–46].
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Fig. 5. Dependence of measurement range and resolution on laser tuning parameters. The
instantaneous linewidth, δν (A) is related to the coherence time, τc or time-of-flight (TOF)
range (B) of the measurement (dashed lines), while the overall bandwidth over which the
laser frequency is tuned, ∆ν (A), is related to the FWHM of the TOF resolution, δτs,Is (B),
of the measurement (solid lines) [33]. The TOF resolution, determined by the tuning spec-
tral range, in principle, can be made much higher than is possible with time-domain NIRS,
without losing efficiency. In time-domain NIRS methods that use gating, improvement in
resolution comes at the cost of reduced efficiency.

By analogy, for a rapidly tunable or swept laser, the instantaneous coherence time (or length),
inversely proportional to the instantaneous linewidth, defines the range of time delays (or path
delays) that can be measured using iNIRS. The instantaneous linewidth, δν , is defined by the
time scale of random phase fluctuations during the frequency sweep [62]. Specifically, a func-
tion describing the roll-off of the iNIRS signal, I (iNIRS)

s (r,τs), over the measurement range,
ϕ(τs), can be defined. This function has a maximum at a time delay of zero between the refer-
ence and sample arms, and decreases for positive or negative time delays [Fig. 5(b)]. Assuming
that ϕ(τs) has a Gaussian shape [cf. Eq. (30)], and that the TOF measurement range τc is the
delay at which ϕ(τs) =

1
2 ϕ(0), τc can be written as

τc =
4ln(2)
πδν

=
4ln(2)

π
λ 2

c

υδλ
, (33)

where δλ = λ 2
c δν/υ is the instantaneous laser linewidth.

Equation (31) and Eq. (33) show that the performance of the iNIRS system strongly depends
on the tuning parameters of the light source. The spectral bandwidth determines TOF resolu-
tion, while the spectral linewidth determines the TOF measurement range (or coherence time).
The relationship between δτs,Is , τc, and coherence properties of the light source are summa-
rized in Fig. 5.

In iNIRS, since the laser wavelength is changed over time, any filtering of the temporal
signal will act as a filter of optical frequency. Thus, the TOF measurement range of the iNIRS
signal is also limited by the detector bandwidth. This can be addressed similarly to the effect
of finite linewidth, i.e. by incorporating detector frequency response into the function ϕ(τs).
At the tuning speeds, ranges, and τs values used in this study, we measured ϕ(τs) to vary by
< 4% over the TOF range of interest. Moreover, correcting our data for the roll-off resulted in
negligible changes in fitted optical properties for this study.

Relations (31) and (33) can be now used to estimate the laser parameters required to achieve
the TOF resolution and range appropriate for analyzing the DTOF in a turbid medium un-
der specific source-detector separation. In particular, ρ = 3 cm requires a range of τc = 5 ns.
To achieve this measurement range, the iNIRS system would require an instantaneous linewidth
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Fig. 6. Layout of the iNIRS optical system. The waveform generator sinusoidally modulates
the current (with repetition frequency fr = 50 kHz) supplied by the current controller which
drives the DFB laser. The frequency-swept near infrared light is collimated by an aspheric
lens (L1) and the shape of the beam is changed from elliptical to circular as it passes through
the anamorphic prism pair (APP). Mirrors M1 and M2 are used to level the beam with the
optical table and guide it through the isolator. Mirrors M3 and M4 serve to couple the
beam through lens L2 into the single mode fiber. The beam is then divided into reference
and sample arms (1% and 99% respectively) via a 99/1 fiber coupler. The beam in the
sample arm is collimated with lens L3 and irradiates the sample. The scattered light from
the sample is collected by L4 and fiber coupled. The light in the reference arm undergoes
a path delay and is then split into two arms with a 50/50 fiber coupler, where one arm
is detected by a photodetector (PD) to monitor power and the other arm passes through
a polarization controller. The reference and sample arms are finally combined by the 50/50
fiber coupler and the resulting interference pattern is detected by a dual balanced detector
(DBD), digitized with a GaGe digitizer, then stored and processed by the PC.

of δλ = 0.57 pm (δν = 176.51 MHz). To achieve a TOF resolution of 10−100 ps, the iNIRS
system would require a bandwidth ∆λ of 28.5−285.5 pm (∆ν of 8−88 GHz), assuming a cen-
tral wavelength of λc = 855 nm and υ = 0.226 mm/ps.

Notably, due to the intrinsic temporal blurring of the scattering process, extended TOF res-
olution provides little additional information about DTOF beyond a certain threshold that de-
pends on the source-detector separation. Hence, the bandwidth to linewidth ratio is 50−500 in
the above example, but could be as low as 10 if the requirement on the bandwidth is relaxed for
large source-detector separations.

3. Experimental setup

The optical system is depicted in Fig. 6. Light from a distributed feedback (DFB) [63] tunable
light source (Eagleyard EYP-DFB-0855-00150-1500-TOC03) with central wavelength λc =
855 nm and a static linewidth of 2 MHz FWHM (full-width at half maximum of the power
spectrum) is collimated using a Thorlabs aspheric lens. Then, the light beam passes through
an anamorphic prism pair with 2.5× magnification, which converted the elliptical shape of the
laser output beam into a nearly circular shape. Subsequently, the beam is directed using mirrors
through a 55 dB optical isolator (Thorlabs IOT-5-850-VLP) in order to minimize the feedback
caused by back-reflections from ferrule angle polished (FC/APC) fiber connectors. FC/APC
connectors reflect approximately −55 dB of light back into the laser cavity. If no isolator is
used, such feedback has a negative impact on the DFB laser operation and may lead to mode
hopping. The resulting beam is focused to a single mode fiber using horizontal and vertical
mirror-based adjustments. Subsequently, the light beam is divided into the sample and reference
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arms via a 99/1 fiber coupler (99% sample and 1% reference). The sample arm light is then
collimated using another Thorlabs aspheric lens and illuminates the liquid phantoms at normal
incidence while another collimated (Thorlabs aspheric lens) single mode fiber collects the light
transmitted through the sample. The reference light, after being sampled with an additional
coupler and photodiode, passes through a polarization controller and is interfered with the light
in the sample arm using a 50/50 fiber coupler.

The temperature as well as the current controlling the laser operation are regulated using
a laser diode current driver with integrated temperature controller and analog current modu-
lation capability (Newport LDC-3724C). The wavelength of the DFB laser is tuned in time
by modulating the input current using a sinusoidal waveform of frequency fr = 50 kHz. This
waveform is generated by a programmable function generator (Stanford Research DS 345).
Therefore, the laser wavelength is swept bidirectionally, so the effective laser tuning rate is
ft = 100 kHz. However, due to possible differences between signals generated using both wave-
length sweep directions, we subsequently use the forward laser sweeps (from shorter to longer
wavelengths) only. Due to the fact that only forward sweeps were used, the measurement time
interval is equal to twice the sweep time. The use of both wavelength sweep directions may
require additional signal processing to compensate for eventual differences in power and noise
levels.

Finally, the spectral interference signal is detected by a dual-balanced photoreceiver (New
Focus 1807-FS). It consists of two photodiodes, which register the spectral fringes with a π
phase shift between them. Subsequently, the signals are subtracted by a differential amplifier
such that the resulting signal approximates the real part of the cross-spectral density function
Wrs(r,ν) [see Eq. (2)]. This signal is then acquired using a high speed digitizer (GaGe PCIe
CSE1442). From now on the r-dependence of the measured and theoretical functions will be
omitted since the geometry is fixed.

4. Signal processing

The signal acquired using the setup described above is subsequently processed in order to con-
vert the cross-spectral density function to the sample field autocorrelation, Γ(iNIRS)

rs (τs), using
Eq. (4). This digital signal processing procedure consists of the following steps. Firstly, due
to the nonlinear (sinusoidal) sweep of the laser, and to a lesser extent, the nonlinear relation
between wavelength and optical frequency ν , the fringe pattern needs to be remapped such
that points of the acquired signal are equidistantly spaced in the ν-domain rather than in the
time-domain. For this purpose one first determines the phase of the fringes acquired without
a sample in the interferometer sample arm by using the Hilbert transformation. Subsequently,
the phase of the resulting function (proportional to ν) is fitted to a polynomial, which relates the
signals in the time- and ν-domains. This polynomial is then used to interpolate each fringe pat-
tern such that the oscillations are equidistant in the optical frequency domain [as in Fig. 4(c)].
Secondly, after compensating for the phase nonlinearity, the signal is zero-padded, windowed
using a Hamming function and inverse Fourier transformed using a Fast Fourier Transform
algorithm.

The set of N processed signals, i.e.
{

Γ̂(iNIRS)
rs (τs,n× tm)

}N−1

n=0
, with tm denoting the measure-

ment time interval, is then used to calculate the photon time-of-flight in the sample using the
following expression:

ˆ̄I (iNIRS)
s (τs) =

1
N

N−1

∑
n=0

Î (iNIRS)
s (τs,n× tm), (34)
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where instantaneous intensity signals are given by

Î (iNIRS)
s (τs,n× tm) =

∣∣∣Γ̂(iNIRS)
rs (τs,n× tm)

∣∣∣2 .
In order to account for the noise from the interferometer reference arm and detection electron-
ics, a set of background signals, acquired with a blocked sample arm, are processed in an iden-
tical fashion. This procedure yields the background intensity, ˆ̄I (iNIRS)

bg (τs), which is subtracted

from ˆ̄I (iNIRS)
s (τs) to get the estimated, noise-bias-corrected DTOF, ˜̄I (iNIRS)

s (τs):

˜̄I (iNIRS)
s (τs) = ˆ̄I (iNIRS)

s (τs)− ˆ̄I (iNIRS)
bg (τs),

from which any negative values are excluded from further analysis.
Instantaneous intensity signals, Î (iNIRS)

s (τs,n× tm) are then exploited to calculate the normal-
ized intensity autocorrelation function using the following estimator:

ĝ(iNIRS)
2 (τs,τd) =

1

(N −m)
[
Ĩ (iNIRS)
s (τs)

]2

N−m−1

∑
k=0

Ĩ (iNIRS)
s (τs,k× tm)Ĩ

(iNIRS)
s (τs,k× tm + τd),

(35)

where Ĩ (iNIRS)
s (τs,n× tm) = Î (iNIRS)

s (τs,n× tm)− ˆ̄I (iNIRS)
bg (τs) and m is the maximum lag index,

which was set to 100. Furthermore, τd = i× tm, where i = 0,1, . . . ,m, stands for the autocorre-
lation time lag.

The noise-bias-corrected intensity autocorrelation function, g̃(iNIRS)
2 (τs,τd) is calculated us-

ing the following procedure. Firstly, values of the function ĝ(iNIRS)
2 (τs,τd) which are below the

noise level are determined. These points as well as the zero-lag point are further excluded from
fits to DWS theory.

Accurate comparison between experimental and theoretical data requires an appropriate time
reference. In diffusion theory, time-of-flight is taken with respect to the moment at which the
light pulse was injected to the sample. Thus, the experimentally measured time-of-flight should
also include the photon traversal time through the cuvette filled with water, τw [64]. For the
experimental setup described in section 3, τw = 44.33 ps. All experimental data are displayed
assuming that the light pulse is injected into the sample at τs = 0; thus, τs represents the time-
of-flight in the scattering medium.

5. Results

Twenty phantoms were prepared by mixing increasing volumes (50 − 1000 µL in steps of
50 µL) of Intralipid 20% (µ ′

s = 170.3 cm−1 at λ = 855 nm [65], µ ′
s = 184 cm−1, µa =

0.0351 cm−1 at λ = 833 nm [66]) in a glass cuvette containing 2 mL of deionized water.
These fluid phantoms were then placed in the sample arm. For each sample, N = 40,000 con-
secutive interference signals were acquired at a laser sweep rate of 100 kHz and tuning range
∆ν of 10.5 GHz, for which the time-resolution, δτs,Is is 60 ps FWHM. The recorded fringe pat-
terns were processed separately and then averaged in order to increase the signal-to-noise ratio
[cf. Eq. (34)]. The resulting photon distributions of time-of-flight under varying concentrations
of Intralipid 20% (c) are depicted in Fig. 7. It follows that the averaged photon time-of-flight,

τ (iNIRS)
s =

∞∫
−∞

τs
˜̄I (iNIRS)
s (τs)dτs

∞∫
−∞

˜̄I (iNIRS)
s (τs)dτs
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Fig. 7. (A,B) Photon time-of-flight distribution under varying concentrations of Intralipid
20%, denoted by c. As the Intralipid 20% concentration is increased, the time-integrated
intensity signal is attenuated (C), and the mean arrival time is increased (D). Theo-
retical points in subfigures C and D were obtained using Eq. (26) and the values of
µa = 4.53×10−2 cm−1 (water absorption due to negligible lipid absorption at near-infrared
wavelengths) and µ ′

s(c) = cµ ′
s,t , where µ ′

s,t = 170.27 cm−1 is theoretical estimation of the
reduced scattering coefficient of Intralipid 20% [65]. The attenuation plots are normalized
with respect to c = 4.8%, since the diffusion approximation is invalid for smaller concen-
trations.

increases with increasing c, which is due to increasing sample optical thickness, Lµ ′
s(c). Fur-

thermore, as predicted by time-resolved diffusion theory, the photon time-of-flight distribution
curves are broadened and attenuated with increasing concentration.

For the experimental geometry depicted in Fig. 6, measured photon DTOFs can be fit-
ted to Eq. (26) with ρ = 0, L = 1 cm, n = 1.33 and experimentally determined values of
σ2

d = 0.09 mm2 and σ2
s = 0.04 mm2 for the incident beam width of 500 µm. Such nonlinear

fitting was performed by minimizing the squared norm of the difference between transmittance
I(DE)
s (τs) resulting from diffusion theory [Eq. (26)] and experimental data, ˜̄I (iNIRS)

s (τs), namely
by solving the following optimization problem:

min
(µa,µ ′

s)

∥∥∥log
[
I(DE)
s (τs)∗ I0(τs)

]
− log

[
α ˜̄I (iNIRS)

s (τs)
]∥∥∥2

, (36)

where α is a normalization factor which accounts for the arbitrary height of the measured in-
tensity. The absorption coefficient determines the slope of the DTOF for large values of τs [2].
Therefore, the optimization procedure [Eq. (36)] is performed on a logarithmic scale such that
the absorption term, (exp [−µaυτs]) in Eq. (26) as well as the multiplicative speckle noise,
become additive. Moreover, the limited TOF resolution broadens the experimentally deter-
mined DTOF [cf. Eq. (32)]. In order to include this effect in the theoretical model we convolve
I(DE)
s (τs) with the instrument response function before fitting. The IRF is measured for a cuvette

#250697 Received 1 Oct 2015; revised 19 Nov 2015; accepted 24 Nov 2015; published 6 Jan 2016 
© 2016 OSA 11 Jan 2016 | Vol. 24, No. 1 | DOI:10.1364/OE.24.000329 | OPTICS EXPRESS 349 



0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

A)
 iNIRS
 iNIRS (linear fit)
 P. D. Ninni et al. 

R
ed

uc
ed

 s
ca

tte
rin

g 
co

ef
fic

ie
nt

, 
' s [

cm
-1
]

Intralipid concentration, c [%]
0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

B)

 

 iNIRS
 Water absorption, a,w 

Intralipid concentration, c [%]

Ab
so

rp
tio

n 
co

ef
fic

ie
nt

 
[x

 1
0-2

 c
m

-1
]

Fig. 8. Optical properties determined by iNIRS in fluid tissue phantoms with varying In-
tralipid 20% concentrations, c: µ ′

s (A), µa (B). Reduced scattering coefficients are com-
pared to data reported in [66] by assuming a linear dependence of µ ′

s on c (orange line
in subfigure A). Furthermore in subfigure A, the green solid line depicts a linear fit to the
experimental data, i.e., µ ′

s(c) = ηc with η = 171.19± 1.92 cm−1. The error bars denote
the standard errors of the extracted parameter values.

filled with deionized water only, i.e. when c = 0% and the a time shift was applied to the IRF
to center it at the origin, while all iNIRS DTOFs were shifted by τw less than this time shift.

The optical properties resulting from the above procedure are depicted in Fig. 8, while se-
lected individual DTOFs compared with those predicted by Eq. (26) are given in Fig. 9. For
low concentrations of Intralipid 20%, the phantom’s optical thickness is much less than 10.
Therefore the predictions of the diffusion approximation to the RTE are incorrect and signif-
icant deviation from this theory can be noticed. However, for larger values of c, the diffusion
approximation is satisfied (Lµ ′

s ≥ 10 transport mean free paths) and experimental data agrees
very well with Eq. (26). Therefore, the values of µ ′

s and µa obtained for c = 2.4% are excluded
from further analysis.

It should be pointed out that the agreement between theoretically and experimentally deter-
mined TOF distributions improves with increasing c. However, the disagreement is noticeable
for very early photons, and may be anisotropy dependent [67]. The limitations of diffusion
theory aside, errors in the bias subtraction are also apparent at high concentrations.

For c ≥ 4.8%, values of the reduced scattering coefficient increase almost linearly with in-
creasing c. Dependent scattering effects [43] and changes in the effective refractive index are
expected at much higher concentrations. Accordingly, we can assume that µ ′

s is a linear function
of c for all phantoms, such that the values of µ ′

s(c) can be extrapolated for larger concentrations
of Intralipid 20%. In particular, for c = 100%, we obtain µ ′

s = 171.19±1.92 cm−1.
On the other hand, the values of the absorption coefficients are fairly constant, with an av-

erage value of µa = (4.73±1.78)× 10−2 cm−1. This is explained by the fact that the µa,w
of water at λ = 855 nm is µa,w = 4.53× 10−2 cm−1, while the absorption of Intralipid 20%
is negligible [65]. The standard error of the absorption coefficient µa significantly decreases for
c ≥ 20%, coinciding with improved agreement between diffusion theory and experimental data
for large values of τs (slope of the TOF distribution).

The extracted values of µ ′
s and µa are compared with other measurements and theoretical

predictions in Table 1. In general, the value of µ ′
s, determined here is slightly smaller than

those determined from other measurements but agrees very well with theoretical estimations
given in [65]. The small disagreement with other studies may be due in part to the use of a
longer wavelength in this study. Further differences may result from assumptions pertaining to
boundary conditions and experimental geometry (transmission or reflectance).

Note that for c = 33.1%, µ ′
s ≈ 55 cm−1. Thus, for a cuvette of length L = 1 cm, the optical
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Fig. 9. Diffusion theory validation. Plots depict the experimental transmittance and fits to
diffusion theory [cf. Eq. (26)] under varying Intralipid 20% concentrations: (A) c = 2.4%,
(B) c = 4.8%, (C) c = 13.0%, and (D) c = 21.6%. For low concentrations (c < 4.8%)
significant deviations from the diffusion approximation are noticed. For c ≥ 4.8% diffusion
theory agrees well with experimental data. The mean squared error, MSE for each fit, after
thresholding normalized intensity values below 0.08, is: (A) MSE = 0.448, (B) MSE =
0.050, (C) MSE = 0.054, and (D) MSE = 0.038.

Table 1. Comparison of optical properties determined by iNIRS with literature values.
µ ′

s [cm−1] µa [×10−2 cm−1] Reference Remarks

178.6±5.4 9.0±2.0 [29] Intralipid 20% mixed with India Ink,
λ = 763 nm

180.0 6.8±0.3 [30] Standard error for µ ′
s is not reported,

λ = 852 nm
184.0±2.6 3.51±0.02 [66] λ = 833 nm
187.0±1.7 − [68] λ = 830 nm

170.3 − [65] Theoretical estimation, λ = 855 nm
171.19±1.92 4.73±1.78 iNIRS λ = 855 nm

thickness is roughly 55 transport mean free paths, which assuming a scattering anisotropy factor
of g = 0.53 [65], corresponds to around 117 scattering events. This shows that iNIRS is capable
of determining optical properties of highly scattering media.

The set of N acquired DTOF intensity signals for the fluid phantom with c = 4.8% was also
used to calculate the normalized intensity autocorrelation function, g̃(iNIRS)

2 (τs,τd). The es-
timated intensity autocorrelation function is subsequently exploited to calculate the absolute
value of the field autocorrelation function g̃(iNIRS)

1 (τs,τd) using expression (23). The value of
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Fig. 10. Time-of-flight-resolved scatterer dynamics. (A) The absolute value of the field
autocorrelation function, |g̃(iNIRS)

1 (τs,τd)|, obtained from the temporal intensity autocorre-

lation g̃(iNIRS)
2 (τs,τd) using Eq. (23), is plotted for three different path lengths (l = υτs),

corresponding to time-of-flight values, τs, and TOF windows marked on the iNIRS DTOF
(B). The solid lines in subfigure A denote the fits of the experimental normalized field
autocorrelation function to the exponential decay predicted by DWS theory [cf. Eq. (27)].

the β parameter was first calculated from ĝ(iNIRS)
2 (τs,τd) using Eq. (24). For the experimental

setup depicted in Fig. 6 we obtained an average value of β = 0.985±0.031.
The resulting values of the first-order field autocorrelation function are plotted in Fig. 10(a)

for three different values of l, which are marked together with TOF resolution (δτs,Is ≈ 60 ps
FWHM) on the corresponding iNIRS DTOF in Fig. 10(b). Figure 10(a) also presents the fits
of DWS theory to the experimental data. Specifically, the squared norm difference between
theoretical function, |g(DWS)

1 (τs,τd)|, resulting from Eq. (27) and experimentally determined
values of the function g̃(iNIRS)

1 (τs,τd), was minimized:

min
ξ

∥∥∥∣∣∣g(DWS)
1 (τs,τd)

∣∣∣− ∣∣∣g̃(iNIRS)
1 (τs,τd)

∣∣∣∥∥∥2
, (37)

where ξ = 2k2DBµ ′
sυτs.

Results presented in Fig. 10(a) further show that the decay rate, ξ , of the normalized inten-
sity autocorrelation function increases with increasing photon path length l, which means that
the photons traveling longer path lengths decorrelate faster than early photons. Photons with
long paths decorrelate faster since they experience more scattering and cumulative momentum
transfer in the DWS framework.

Figure 11 depicts the decay rate ξ of the first-order field autocorrelation function (extracted
from the intensity autocorrelation function using Siegert relation [Eq. (23)]) under increas-
ing values of τs. These experimental results are compared with predictions of DWS theory,
which assumes a linear increase of ξ proportional to the number of reduced scattering events.
The fit to DWS theory is applied for τs > 200 ps, due to the fact that earlier photons expe-
rience less momentum transfer than is expected from DWS theory. From this analysis and
using experimentally determined value of µ ′

s we obtained a Brownian diffusion coefficient,
i.e., DB = (2.23 ± 0.15)× 10−12 m2s−1. This value agrees well with data reported in [30]:
DB = (1.9± 0.2)× 10−12 m2s−1 and in [69]: DB = (1.6± 0.2)× 10−12 m2s−1, but is smaller
than theoretical estimation of DB = 3.6×10−12 m2s−1 [30].

In summary, the experimental results show that iNIRS is capable of simultaneously extracting
the optical properties and dynamics of the turbid medium.
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Fig. 11. Diffusing wave spectroscopy validation. The decay rate, ξ of the first-order auto-
correlation function, extracted from intensity autocorrelation function using Siegert relation
[Eq. (23)], is plotted for increasing values of τs and fit assuming a linear dependence of ξ
on τs for τs > 200 ps, as predicted by DWS theory

(
ξ (τs) = 1.02×10−4τs

)
. The error

bars denote the standard error of ξ extracted by fitting experimental data using Eq. (27)
and Eq. (37). The time-of-flight through a water-filled cuvette is τw = 44.33 ps.

6. Summary and discussion

We have introduced interferometric near-infrared spectroscopy, which simultaneously derives
the optical properties and dynamics of a turbid medium from analysis of the spectral interfer-
ence fringe pattern. We described a procedure to determine the distribution of the photon time-
of-flight from the spectral interference fringes. Moreover, we directly related iNIRS intensity
fluctuations to theoretical descriptions of time-of-flight resolved autocorrelations provided by
time-resolved diffusion theory and diffusing wave spectroscopy. Therefore, iNIRS achieves the
functionality of a hybrid FD NIRS/DCS instrument with a single modality.

Next, the interferometric setup, which was described in detail, was used to measure the spec-
tral fringe pattern. This signal, after digital processing, was subsequently used to extract the
optical and dynamical properties of fluid phantoms that mimick biological tissue. Optical and
dynamical properties of turbid media were determined from the experimental data by using dif-
fusion theories [Eq. (26) and Eq. (27)]. For source-detector separations or time-of-flight regimes
where diffusion theory is not valid, light propagation in a turbid medium can be modeled using
Monte Carlo simulations [70].

The performance of the iNIRS system strongly depends on the spectral and tuning parameters
of the light source. For the reasons described in section 2.5, the spectral linewidth determines
the TOF range, τc, while the bandwidth determines the TOF resolution, δτs. It should be empha-
sized that the optical field autocorrelation function can be measured using the interferometer as
long as the total TOF mismatch between the two interferometer arms is less than τc. However,
simply increasing τc, by decreasing the laser linewidth, does not enable measuring the DTOF
in an arbitrary turbid medium. This is due to the fact that the probability of detecting a photon
emerging from the scattering medium decreases with increasing source-detector separation and
also with increasing values of the absorption and scattering coefficients [Eq. (26)].

In section 2.2, it was determined that the analysis of the dynamics in a turbid medium re-
quires rapidly tunable lasers. However, increasing the tuning rate of the light source reduces
the TOF range, τc, due to laser tuning dynamics [61]. Nevertheless, the temporal resolution of
the intensity autocorrelation function can be improved by a factor of two if both forward and
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backward laser sweeps are used. In this study, only the interferometric signal acquired during
the forward laser sweep was analyzed.

The iNIRS system can also be adapted to operate in reflectance geometry, which in some
cases is the only possible way of examining biological tissue in vivo. This would require mod-
ifications to the optical setup as well as theoretical model for time-resolved reflectance [7, 57].
Measurements of the optical properties and dynamics of turbid media in reflectance geometry
will be the subject of further studies.

7. Conclusions

We developed interferometric near-infrared spectroscopy, which simultaneously quantifies op-
tical and dynamical properties of turbid media. This is achieved by using a rapidly-acquired
series of spectral interference fringe patterns to determine both path-length-resolved intensities
and their autocorrelations. We prove this by measuring both intensity and autocorrelation of
light transmitted through diffusive fluid phantoms. There are two main benefits of our tech-
nique. Firstly, it achieves photon time-of-flight measurements more simply and cost-effectively
than time-domain NIRS, without requiring pulsed lasers and time-correlated single photon
counting devices. Secondly, the method significantly improves upon DCS by providing the
capability to measure TOF-resolved intensity autocorrelation functions, from which scatterer
dynamics can be readily quantified. The ultimate goal for this project is to apply this method to
design an iNIRS device for real-time, in vivo functional analysis of human tissue.
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