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Sensing and imaging methods based on the dynamic scattering of coherent light (including laser speckle, laser Doppler,
diffuse correlation spectroscopy, dynamic light scattering, and diffusing wave spectroscopy) quantify scatterer motion
using light intensity fluctuations. The underlying optical field autocorrelation, rather than being measured directly, is
typically inferred from the intensity autocorrelation through the Siegert relationship, assuming that the scattered field
obeys Gaussian statistics. Here, we demonstrate interferometric near-infrared spectroscopy for measuring the time-of-
flight (TOF) resolved field and intensity autocorrelations in turbid media. We find that the Siegert relationship breaks
down for short TOFs due to static paths whose optical field does not decorrelate over experimental time scales. We also
show that eliminating such paths by polarization gating restores the validity of the Siegert relationship. The unique
capability of measuring optical field autocorrelations, as demonstrated here, enables the study of non-Gaussian and
non-ergodic light scattering processes. Moreover, direct measurements of field autocorrelations are more efficient than
indirect measurements based on intensity autocorrelations. Thus, optical field measurements may improve the quanti-
fication of scatterer dynamics with coherent light. © 2016 Optical Society of America

OCIS codes: (030.1640) Coherence; (030.6140) Speckle; (030.6600) Statistical optics; (110.7050) Turbid media.
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1. INTRODUCTION

Coherent light scattered from a turbid medium generates a ran-
dom intensity distribution or speckle pattern [1,2], which fluc-
tuates in time as the scatterers move. This effect serves as the
basis for sensing and imaging methods based on dynamic scatter-
ing of coherent light (DSCL). In dynamic light scattering (DLS),
the time scale of fluctuations of single scattered light, quantified
using the intensity autocorrelation [3,4] or power spectrum [5,6],
is used to determine scatterer dynamics. Assuming the time-
dependent field Us�td � obeys zero-mean Gaussian statistics,
the field autocorrelation g1�τd �, which encodes scatterer dynam-
ics, can be obtained from the intensity autocorrelation g2�τd � via
the Siegert relationship [7–11],

g2�τd � � 1� βjg1�τd �j2; (1)

where

g1�τd � �
hU �

s �td �Us�td � τd �i
hI s�td �i

; (2)

I s�td � � jU s�td �j2 denotes the instantaneous intensity, and

g2�τd � �
hI s�td �I s�td � τd �i

hI s�td �i2
; (3)

where τd denotes the time lag for correlation, the brackets indicate
ensemble averaging, and β ∈ �0; 1� is a parameter accounting

for the number of measured speckles. If coherent detection is used
(as in this work), β � 1.

The extension of DLS to the multiple scattering regime
[10,12–16], diffusing wave spectroscopy (DWS) [13], was first
demonstrated for the analysis of colloids, and similar methods
have been applied to study blood flow in biological tissue
[17,18]. These methods use the Siegert relationship to estimate
blood dynamics from intensity autocorrelations [12,13,16,19,20].
A key assumption in DSCL, and more broadly, in stochastic trans-
port [21,22], is ergodicity, or the equivalence of the ensemble
[Eqs. (2) and (3)] and parametric (e.g., temporal) averages within
a sample.

DSCL techniques have two main limitations. Firstly, the
photon time-of-flight (TOF) is not measured. Accurate determi-
nation of particle dynamics from multiply scattered light is
challenging if the TOF distribution is unknown. Secondly, con-
ventional intensity-based DSCL methods are limited to systems
in which the Siegert relation holds [3]. If the number of scattering
paths are few or correlated, Gaussian statistics do not hold, invali-
dating the Siegert relation [23]. Additionally, the Siegert relation-
ship cannot be applied to non-ergodic media [24], including
samples with static components [10,25].

When the field reemitted by a turbid medium contains a static,
time-independent, additive component Uc , Us�td � is written as
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U s�td � � Uf �td � � Uc; (4)

where Uf �td � is a zero-mean Gaussian process. The interpretation
of Eq. (4) is that Uc does not change over experimental time scales,
whereasUf �td � does. After substituting Eq. (4) into Eq. (2), g1�τd �
takes the form [10,11,26]

g1�τd � � η� �1 − η�γ1�τd �; (5)

where η � I c∕Ī s, γ1�τd � � G1;f �τd �∕Ī f , and G1;f �τd � �
hU �

f �td �Uf �td � τd �i is the autocorrelation of the dynamic term,
while I c � U �

c U c , Ī f � G1;f �0� and Ī s � hI s�td �itd �
I c � Ī f . Assuming ergodicity of Uf , ensemble averaging to deter-
mine G1;f is equivalent to temporal averaging with respect to td .

If β � 1, the intensity autocorrelation is [10,11,26]

g2�τd � � 1� 2η�1 − η�Re�γ1�τd �� � �1 − η�2jγ1�τd �j2: (6)

By solving Eq. (6) for γ1�τd � and assuming it is real and non-
negative, one obtains

γ1�τd � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 � g2�τd � − 1

p
− η

1 − η
; (7)

which yields a different estimation for the field autocorrelation
than the Siegert relationship with β � 1; nevertheless, both
agree for η � 0. Assuming coherent detection (β � 1), η �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − g2�0�
p

, since γ1�0� � 1. However, unless β is known
a priori or fixed at a known value (e.g., 1) through careful exper-
imental design [27], η cannot usually be estimated independently
of β.

Approaches to address non-ergodicity include the use of
higher-order intensity autocorrelations [11,28], ensemble averag-
ing of independent speckles [24,26] by inducing sample motion
[29], spatial diversity [10,16,30], insertion of an additional ergo-
dic medium [31], or fitting based on an assumed functional form
of γ1�τd � [25]. However, these approaches entail either added
complexity or extra measurements. Yet another approach is to
deliberately introduce a strong static component to increase η,
such that the central term in Eq. (6) dominates and
Re�γ1�τd �� can be assessed [24]. However, in this “heterodyne”
approach, the relative fluctuation size is reduced [11] and η is
artificially modified. Here, we present a straightforward approach
to directly measure g1�τd � from a single time series and obtain
both η and γ1�τd � from Eq. (5) (see Eq. (S9) of Supplement 1).

To accomplish this, we demonstrate interferometric near-
infrared spectroscopy (iNIRS) [32] for direct determination of
TOF-resolved field and intensity autocorrelations. This is
achieved through the analysis of the spectral interference between
light traversing the sample and reference paths. This work extends
beyond the intensity autocorrelations [32] demonstrated previ-
ously and determines field autocorrelations directly from the
phase of the spectral interference.

2. MEASUREMENT OF FIELD
AUTOCORRELATIONS

The spectral density is measured as a function of optical fre-
quency, ν, over time, td , by a Mach–Zehnder interferometer
(MZI) with a narrow-linewidth tunable laser. The time for
one laser sweep is assumed to be rapid compared to the time scale
of the field fluctuations. The registered signal is then given by

S�ν; td � � SDC�ν; td � � 2Re�Wrs�ν; td ��;

where SDC�ν; td � is the DC component, assumed to be domi-
nated by the reference arm, and Wrs�ν; td � is the cross-
spectral density between complex spectral amplitudes of the
two paths [33]. By the Wiener–Khintchine theorem, Wrs�ν; td �
can be used to recover information about the sample field.
Namely, after suppressing SDC�ν; td �, and inverse Fourier trans-
forming the resulting signal, one obtains

F −1f2Re�Wrs�ν; td ��g
� F −1fWrs�ν; td �g � F −1fW�

rs�ν; td �g
� Γrs�τs ; td � � Γ�

rs�−τs ; td �; (8)

where F −1 denotes the inverse Fourier transform, Γrs is the mu-
tual coherence function,

Γrs�τs ; td � � hU �
r �t s; td �U s�t s � τs ; td �its

� lim
T→∞

1

2T

Z
T

−T
U �

r �t s ; td �Us�t s � τs ; td �dt s; (9)

and τs is the conjugate variable to ν, representing the TOF delay
between interferometer arms. Ur and Us are hypothetical, not
measured, reference and sample fields whose complex mutual
coherence function, Γrs�τs ; td � [inverse Fourier transform of
W rs�ν; td �], relates to the complex transmitted sample field.
We assume that the complex conjugate term �Γ�

rs�−τs ; td �� can
be excluded. This, in practice, is achieved by adjusting the optical
path mismatch between interferometer arms so the two terms in
the last line of Eq. (8) do not overlap.

By repeatedly measuring Γrs�τs ; td � over time td (distinct and
separable from τs), the TOF-resolved first-order iNIRS autocor-
relation is determined using

g�iNIRS�
1 �τs ; τd � �

G�iNIRS�
1 �τs ; τd �

G�iNIRS�
1 �τs ; 0�

; (10)

where G�iNIRS�
1 �τs ; τd � � hΓ�

rs�τs ; td �Γrs�τs ; td � τd �itd . This
experimental measurement is related to the TOF-resolved field
autocorrelation,

G1�τs ; τd � � hU �
s �τs ; td �Us�τs ; td � τd �itd ; (11)

by a convolution integral,

G�iNIRS�
1 �τs ; τd � �

Z
∞

−∞
G1�τ 0s ; τd �I0�τs − τ 0s �dτ 0s ; (12)

where I0�τs� denotes the instrument response function (IRF),
which depends on the spectral range over which Wrs is measured
[32]: Δν ≈ cΔλ∕λ20 (c is the speed of light, Δλ denotes the wave-
length bandwidth, and λ0 stands for the center wavelength in free
space). Hence, iNIRS measures the convolution of the TOF-
resolved autocorrelation G1 with the IRF. For large Δλ, the
IRF approaches a delta function. Therefore, G�iNIRS�

1 extracts
TOF-resolved dynamics. In addition,

Ī �iNIRS�
s �τs� � G�iNIRS�

1 �τs ; 0� � hI s�τs ; td �itd
� hI s�τs ; td �itd � I0�τs�; (13)

where I s�τs ; td � � jΓrs�τs ; td �j2 and � denotes convolution with
respect to τs. Thus, Ī

�iNIRS�
s �τs�, the measured temporal point

spread function (TPSF), is equal to the true photon TOF
distribution, hI s�τs ; td �itd , convolved with the IRF.

In the presence of a static component, I c , Eq. (11) can be
written as
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G1�τs ; τd � � I c�τs� � G1;f �τs ; τd �:
After convolving with the IRF, one obtains [cf. Eq. (12)]

G�iNIRS�
1 �τs ; τd � � �I c�τs� � G1;f �τs ; τd �� � I0�τs�

� I �iNIRS�
c �τs� � G�iNIRS�

1;f �τs ; τd �; (14)

where G�iNIRS�
1;f is the component of G�iNIRS�

1 that decorrelates over
time. Accordingly, Eq. (13) now reads as

Ī �iNIRS�
s �τs� � I �iNIRS�

c �τs� � Ī �iNIRS�
f �τs�

with Ī �iNIRS�
f �τs� � G�iNIRS�

1;f �τs ; 0�. Therefore, by using temporal
field autocorrelations, iNIRS distinguishes static and dynamic
contributions. Finally, the TOF-resolved intensity autocorrelation
can also be determined experimentally using iNIRS:

g �iNIRS�
2 �τs ; τd � �

hI s�τs ; td �I s�τs ; td � τd �itd
hI s�τs ; td �i2td

: (15)

Consequently, iNIRS measures both the TPSF and TOF-
resolved field and intensity autocorrelations, overcoming ambigu-
ities inherent in intensity-based DSCL techniques. This allows
verification of the Siegert relation, and potentially, the study of
non-Gaussian and non-ergodic light scattering where Eq. (1) does
not hold.

The iNIRS experimental setup is depicted in Fig. 1(a). The
frequency-swept light is divided into reference and sample arms.
The collimated beam from the sample arm irradiates the turbid
medium, which attenuates, broadens, and delays the incident
light distribution. The light paths are finally combined by a fiber
coupler and detected by a differential detector. The digitized elec-
tronic signal approximates 2Re�Wrs�ν; td ��. Since the laser is
swept in frequency, short photon paths through the sample pro-
duce smaller electronic beat frequencies than longer paths, pro-
vided that the reference arm TOF is shorter than the ballistic
sample arm TOF [Fig. 1(b)]. By converting 2Re�Wrs�ν; td �� to
Γrs�τs ; td � through Fourier analysis [Eq. (8)], the beat frequency,
amplitude, and phase of the electronic signal [Fig. 1(b)] yield the

sample TOF, field magnitude, and field phase, respectively. This
novel feature enables plotting TOF-resolved analytic field time
courses [Fig. 1(c)] based on Γrs. As the field is complex, consisting
of real and imaginary parts, these plots are naturally three-
dimensional.

The coherent addition of multiple light paths within the TOF
range defined by the IRF [Eq. (13)] leads to fluctuations in
jΓrs�τs ; td �j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I s�τs ; td �

p
and φs�τs ; td � � arg�Γrs�τs ; td ��, as

the phases of these light paths change over time [Fig. 1(c)].
The TPSF can be determined by incoherent averaging over td
at each value of τs [Fig. 1(d) and Eq. (12)]. The field of ballistic
photons does not decorrelate (although not present in this work,
the field of photons with purely static scattering also does not
decorrelate). The field of late photons decorrelates faster than that
of early photons, as more scattering events lead to increased
momentum transfer [Fig. 1(e)]. In the DWS limit [13], the field
decorrelation rate linearly depends on the number of reduced scat-
tering events, μ 0

sυτs (with υ denoting the speed of light in the
medium and μ 0

s standing for the reduced scattering coefficient).

3. RESULTS

To compare the TOF-resolved field and intensity autocorrela-
tions under ergodic and non-ergodic conditions, Intralipid
20% (IL20) with μ 0

s � 17 mm−1 [34] was diluted in a 10 mm
thick cuvette with deionized water to achieve phantom
concentrations of cp � 5.2% (μ 0

s � 0.89 mm−1), cp � 5.5%
(μ 0

s � 0.94 mm−1), and cp � 5.8% (μ 0
s � 0.99 mm−1). Then,

both MZI arms were co-polarized using two polarization control-
lers [FOPC in Fig. 1(a)]. For each sample, N � 40; 000 consecu-
tive interference signals were acquired with a laser sweep duration
of ∼10 μs at a sweep repetition rate of 50 kHz and an incident
power of 25 mW. Each signal was processed to estimate
Γrs�τs ; td �, and temporal averages of I s�τs ; td � were calculated
to obtain the TPSFs [first column of Fig. 2]. As cp increases,
I �iNIRS�
c �τs� decreases rapidly due to ballistic attenuation, while
Ī �iNIRS�
f �τs� decreases more gradually. Therefore, with increasing
cp, the relative contribution of the dynamic intensity, Ī �iNIRS�

f �τs�,
increases. Note that I �iNIRS�

c �τs� has the same width as the IRF due
to the convolution in Eq. (14). The static and dynamic intensities
are analogous to the prompt and equilibrated components, respec-
tively, from wave scattering in complex systems [21,35].

The fluctuating complex field time courses (second column of
Fig. 2) were used to estimate g�iNIRS�

1 [Eq. (10)] and g �iNIRS�
2

[Eq. (15)]. All autocorrelation estimates were corrected for biases
caused by additive noise (see Supplement 1). The resulting
intensity-based estimate, denoted as g�iNIRS�

1;I is compared to the

direct, field-based estimate, g �iNIRS�
1 , in the third column of

Fig. 2. For short TOFs, g�iNIRS�
1;I decays faster than g �iNIRS�

1 ,

and g �iNIRS�
1 decorrelates to a constant value η instead of zero.

This indicates that the Siegert relationship breaks down due to
the non-ergodicity of the reemitted light.

Since the dynamic component decorrelates, the static contri-
bution can be estimated as η � limτd→∞g

�iNIRS�
1 �τs ; τd � and used,

in turn, to determine γ�iNIRS�
1 , the dynamic (ergodic) component

autocorrelation [Eq. (5)]. This is compared, in the fourth column
of Fig. 2, to γ�iNIRS�

1;I , calculated from g �iNIRS�
2 using Eq. (7).

Evidently, both γ�iNIRS�
1 and γ�iNIRS�

1;I now agree. However, the
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Fig. 1. (a) A Mach–Zehnder interferometer with a tunable, temporally
coherent light source (DFB, distributed feedback laser centered at 855 nm;
APP—anamorphic prism pair; OI—optical isolator; FOPC, fiber optical
polarization controller; DBD—dual balanced detector; L1, L2, L3, L4—
lenses; PC—personal computer). (b) Idealized visualization of the real part
of the cross-spectral density for different photon paths. (c) Coherent light
scattering from moving particles causes fluctuations in the mutual coher-
ence function, Γrs . Fluctuation dynamics increase with photon TOF due to
increasing momentum transfer. (d) TPSF is obtained by temporally aver-
aging consecutive measurements of jΓrsj2 [see Eq. (13)]. (e) Field and in-
tensity autocorrelations are determined from Γrs and jΓrsj2, respectively.
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intensity-based estimate is noisier, particularly for long-photon
TOFs [see Fig. 2(c)]. As suggested by our simulations, the
additional phase information in the optical field reduces the
autocorrelation estimation error and bias (see Supplement 1).

The non-ergodicity, which invalidates the Siegert relationship,
was confirmed through a statistical analysis. The intensity and
phase distributions for a complex Gaussian field with a static
background of zero phase angle [Eq. (4)] are given by [2]

pI �I s� � ξ exp�−ξ�I s � I c��I 0�α�; I s ≥ 0; (16)

pφ�φs� �
ξ

2π
e−ξI c

Z
∞

0

exp�α cos�φs� − ξI s �dI s ;

− π ≤ φs < π; (17)

where ξ � Ī −1f , α � 2ξ
ffiffiffiffiffiffiffiffi
I sI c

p
, I 0�α� is a modified Bessel func-

tion of the first kind, and I c is the static intensity. Equation (16) is
the modified Rician distribution. For I c � 0, Eq. (16) reduces to
the negative exponential distribution, pI �I s� � ξ exp�−ξI s �,
while Eq. (17) becomes pφ�φs� � 1

2π .
Figure 5 depicts the intensity and phase distributions obtained

for the cp � 5.2% IL20 phantom at three fixed values of τs. The
intensity distributions were also fitted with modified Rician and
negative exponential distributions using a maximum likelihood
approach. For short paths, the intensity distribution obeys modi-
fied Rician statistics, and the negative exponential fit is poor.

However, as the static contribution decreases with the increasing
path length, the phases become more uniform [Fig. 3(d)], the
intensities approach the negative exponential distribution, and
zero-mean Gaussian statistics describe the field. Thus, the statis-
tical distributions in Fig. 3 confirm the autocorrelations in Fig. 2.

To further confirm that the static field component invalidates
the Siegert relationship, the detection path was cross-polarized,
suppressing ballistic paths. Figure 4 depicts the TPSF, complex field
time courses, and autocorrelation estimates for cp � 5.2%,
where the invalidity of the Siegert relation was previously most ap-
parent. Comparing cross- to co-polarization results [Fig. 2(a)], the
TPSF now comprises only a dynamic component [Fig. 4(a)].
Consequently, the transmitted field does not contain a constant
term [Fig. 4(b)]. As a result, the validity of Eq. (1) is restored
for all paths [see Figs. 4(c) and 4(d)]. Exclusion of the static com-
ponent by polarization gating is also confirmed by statistical distri-
butions in Fig. 5. Here, the measured light intensities, even for short
paths, are exponentially distributed and the phases are uniform.

4. DISCUSSION

In iNIRS, as in other DSCL methods, multiple speckles must be
observed in order to estimate the autocorrelations, with improved
precision being achieved with more temporal speckle evolutions
or “lifetimes” [36]. However, our simulations (Supplement 1)
suggest that fewer speckle lifetimes are required with field-based

Fig. 2. Transmitted field and intensity dynamics as a function of TOF and scatterer concentration for parallel polarization: (a) cp � 5.2%,
(b) cp � 5.5%, and (c) cp � 5.8%. The first column shows the TPSFs, with constituent static and dynamic components, and the second column
shows complex field time courses for three τs values, marked on the TPSF plots. The third column shows that the directly estimated field autocorrelations,
g �iNIRS�
1 , calculated using Eq. (10), disagree with g �iNIRS�

1;I , the field autocorrelations inferred from the intensity autocorrelations using the Siegert relation
[Eq. (1)] with variable β. Discrepancies are most notable for short paths and low scattering. However, as shown in the fourth column, both the field-based
and intensity-based dynamic-component autocorrelation estimates (γ�iNIRS�

1 and γ�iNIRS�
1;I , respectively) agree better if the non-ergodic component is ac-

counted for [cf. Eqs. (5) and (7)]. In this figure, the superscript (iNIRS) was omitted to improve readability.
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Fig. 3. Transmitted intensity and phase distributions for a cp � 5.2% phantom and parallel polarizations [Fig. 2(a)]. Intensity histograms for:
(a) τs � 50 ps, (b) τs � 80 ps, and (c) τs � 110 ps are fitted with modified Rician [Eq. (16)] and negative exponential distributions. Both fits overlap
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Fig. 4. Transmitted field and intensity dynamics as a function of TOF for perpendicular polarization and cp � 5.2% [same concentration as in
Fig. 2(a)]. (a) TPSF overlaps with I f �τs� due to the absence of the static component. Note that normalization was performed to the TPSF maximum
for parallel polarization [cf. Fig. 2(a)]. (a) Complex field time courses. (c, d) Directly estimated field autocorrelations agree with those inferred from
intensity autocorrelations.
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the shortest paths [cf. Fig. 3].
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measurements to achieve the same precision as intensity-based
measurements. Though results were obtained with a measurement
time of 0.8 s in the main text and 0.2 s in Supplement 1, these
times could be further reduced by employing improved estimators
or utilizing both forward and backward laser sweeps.

It is important to note that the interferometer must be more
stable for field-based than intensity-based measurements. As a
rule of thumb, the phase of the interferometer must be stable over
the decorrelation time scale of interest. In the present study, this
criterion was satisfied without taking special measures to stabilize
the interferometer. The advantages of field-based DSCL, includ-
ing statistical efficiency and freedom from constraints of the
Siegert relationship and ergodicity, are expected even if alternative
methods (e.g., phase shifting) are used to determine the optical
field. Importantly, iNIRS yields TOF-resolved field autocorrela-
tions, from which sample dynamics can be derived through DWS
[13] without explicit knowledge of the absorption.

In summary, we demonstrated iNIRS for the measurement of
the intensity and field autocorrelations simultaneously with the
TOF resolution. This approach to address non-ergodicity uses
a single set of measurements on the light naturally reemitted from
an intact sample. We used this unique capability to directly ex-
amine the Siegert relationship, assumed in many DSCL tech-
niques. We found a breakdown of this relationship for small
scatterer concentrations and short photon TOFs. Methods to
measure the optical field will improve the efficiency and quanti-
tative capabilities of DSCL techniques.
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