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Light-scattering methods are widely used in soft matter physics and biomedical optics to probe dynamics in turbid
media, such as diffusion in colloids or blood flow in biological tissue. These methods typically rely on fluctuations of
coherent light intensity, and therefore cannot accommodate more than a few modes per detector. This limitation has
hindered efforts to measure deep tissue blood flow with high speed, since weak diffuse light fluxes, together with low
single-mode fiber throughput, result in low photon count rates. To solve this, we introduce multimode fiber (MMF)
interferometry to the field of diffuse optics. In doing so, we transform a standard complementary metal-oxide-
semiconductor (CMOS) camera into a sensitive detector array for weak light fluxes that probe deep in biological
tissue. Specifically, we build a novel CMOS-based, multimode interferometric diffusing wave spectroscopy (iDWS)
system and show that it can measure ∼20 speckles simultaneously near the shot noise limit, acting essentially as ∼20
independent photon-counting channels. We develop a matrix formalism, based on MMF mode field solutions and
detector geometry, to predict both coherence and speckle number in iDWS. After validation in liquid phantoms, we
demonstrate iDWS pulsatile blood flow measurements at 2.5 cm source-detector separation in the adult human brain
in vivo. By achieving highly sensitive and parallel measurements of coherent light fluctuations with a CMOS camera,
this work promises to enhance performance and reduce cost of diffuse optical instruments. © 2018 Optical Society of

America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (120.6160) Speckle interferometry; (170.0170) Medical optics and biotechnology; (060.0060) Fiber optics and optical com-

munications; (030.4070) Modes; (290.4210) Multiple scattering.
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1. INTRODUCTION

Fluctuations of scattered light can noninvasively probe the micro-
scopic motion of scatterers in turbid media such as colloids,
foams, gels, and biological tissue. Diffusing wave spectroscopy
(DWS) uses intensity fluctuations of multiply scattered coherent
light to infer the dynamics of a turbid medium (or sample) [1,2].
When informed by a light transport model that incorporates
medium optical properties, illumination, and collection geometry,
DWS can quantify particle dynamics. When DWS is applied to
quantify blood flow in biological tissue by modeling transport
with the correlation diffusion equation solution for a semi-infinite
turbid medium [3], the term “diffuse correlation spectroscopy”
(DCS) is often used [4–7]. Compared to singly scattered light
dynamics, multiply scattered light dynamics can interrogate
shorter time scales of motion [8] and probe deeper into turbid
media such as the human head [4]. However, the available surface
flux of diffuse light, which experiences many scattering events and
penetrates deeply, is weak. DWS and DCS are homodyne
methods, as they measure the intensity fluctuations formed by

self-interference of changing light fields from various scattered
sample paths. As single or few speckle collection is needed to mea-
sure these fluctuations, and light fluxes are low, single photon
counting is required.

Heterodyne optical methods interfere a strong reference light
field with the weak scattered sample field(s) to boost signal.
Optical coherence tomography is a widespread optical heterodyne
technique that forms images with quasi-ballistic back-reflected
light, usually with a single-mode fiber (SMF) collector [9].
However, heterodyne interferometry is rarely applied to diffuse
optical measurements such as DWS. Heterodyne interferometry
with a single detector has been applied to study the transition
from ballistic to diffusive transport in suspensions [10,11].
However, to date, deep tissue blood flow experiments have exclu-
sively used homodyne DCS. The use of SMF or few-mode fiber
(FMF) collectors in homodyne DCS limits achievable photon
count rates at large source-detector (S-D) separations, making
deep tissue, high-speed measurements challenging [4,5]. While
time-of-flight-resolved methods enable deep tissue measurements
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at short S-D separations [12,13], their speed remains limited by
the collection fiber throughput.

While multimode fibers (MMFs) improve throughput,
MMFs are typically not used for collection in DWS and DCS.
Conventional wisdom states that heterodyne interferometry
should not be performed with MMF collection. Indeed, in
heterodyne interferometry, multiple sample and reference modes
interfering on a single detector reduce the mutual coherence,
which negates the higher MMF throughput. Also, with coherent
superposition of modes, one detector cannot measure more than
one speckle (see Section 2.A). For these reasons, while MMFs
are used occasionally in interferometers with single detectors
[14–16], these systems cannot effectively utilize the high
MMF throughput. Similarly, conventional wisdom states that ho-
modyne interferometry (such as DCS) should not be performed
with MMF collection. In homodyne interferometry, multiple
modes on a single detector reduce the speckle contrast (coherence
factor), which hinders measurements of intensity dynamics [17].
Thus, in the DWS/DCS literature, bundles of SMF or FMF col-
lector(s) with dedicated single photon-counting detector(s) are
typically employed to achieve high-throughput, multispeckle
detection needed for high-speed, deep-tissue sensing [18,19].
However, avalanche photodiode arrays and associated electronics
are expensive, limiting the number of possible channels. Multi-
speckle systems with charge-coupled device cameras cannot cur-
rently capture rapid temporal dynamics [20,21], and camera noise
may further degrade the performance of homodyne techniques.

To address these issues, we introduce interferometric DWS
(iDWS), a heterodyne method that, contrary to conventional
wisdom, uses a MMF collector along with a detector array to
parallelize measurements, and show that it allows deep-tissue
measurements without single-photon-counting detectors. We
propose mutual coherence degree (MCD) and speckle number
as two key figures of merit to optimize system design. We develop
a statistical iDWS measurement model based on rigorous MMF
mode field solutions and a transmission matrix formalism, apply-
ing it to investigate design tradeoffs. We show that an appropriate
detector array can realize the benefits of MMF light throughput
and multispeckle detection, while preserving coherence. Based on
these results, we demonstrate an iDWS system with detection by
a complementary metal-oxide-semiconductor (CMOS) line-scan
camera. Though the camera is not scientific grade, heterodyne
gain enables nearly shot-noise-limited performance. Finally, with
this iDWS system, we demonstrate high-speed measurements of
pulsatile blood flow in the human brain in vivo at a 2.5 cm S-D
separation.

2. METHODS

A. Theory

1. Multimode Interference Transmission Matrix

To understand heterodyne detection by a MMF interferometer,
we start from the intensity, I , formed by the superposition of two
coherent fields in a Mach–Zehnder (M-Z) interferometer [22]:

I � jES � ERj2 � jES j2 � jERj2 � 2RefE�
S · ERg, (1)

where ES and ER are the vector electric fields of the sample and
reference interferometer arms, respectively. In a MMF-based M-Z
interferometer, where monochromatic input light with angular
frequency, ω, splits between two arms with lengths, LS and

LR , the corresponding electric fields, ES and ER , formed by
excited core modes with different magnitudes and phases at
the output are [23,24]

ES�x, y� �
X
m

aS,mΨm�x, y� exp�i�ωt − βmLS��, (2)

ER�x, y� �
X
n
aR,nΨn�x, y� exp�i�ωt − βnLR��, (3)

where aS,m and aR,n are the excitation coefficients, Ψm�x, y� and
Ψn�x, y� form the normalized transverse core mode field bases,
and βm and βn are the propagation constants of the mth and
nth core modes in the sample and reference MMFs, respectively.
Exemplary complex MMF field patterns, ES and ER , are shown in
the top row of Fig. 1. By substituting Eqs. (2) and (3) into
Eq. (1), the power measured by a sensor (i.e., spatial integral
of intensity over an area p) is

Pp �
Z Z

p

���X
m
AS,mΨm�x, y� �

X
n
AR,nΨn�x, y�

���2dxdy

�
Z Z

p

2
6664

���P
m
AS,mΨm�x, y�

���2 � ���P
n
AR,nΨn�x, y�

���2

�2Re

�P
m

P
n
A�
S,mΨ�

m�x, y� · AR,nΨn�x, y�
�
3
7775dxdy

� PS,p � PR,p � PAC,p, (4)

where AS,m and AR,n are complex amplitudes, including the mag-
nitude and phase, of the mth and nth excited core modes in the
sample and reference MMFs, respectively. Note that for fibers of
interest, propagation over a distance of centimeters is sufficient to
randomize the phases of excited core modes. Equation (1) [and
therefore, Eq. (4)] consists of three terms corresponding to the
sample intensity (power), PS,p, the reference intensity (power),
PR,p, and a heterodyne term, PAC,p, resulting from the coherent
superposition of the two fields, as shown in Fig. 1 (bottom row).
In practice, the intensity of the sample MMF speckle pattern is

Fig. 1. MMF interference pattern between ES and ER , formed by core
modes with equal magnitudes and random phases. The vector electric
field possesses two orthogonal transverse (x and y) components (top
row). The resulting speckle pattern comprises a sample, reference, and
heterodyne term (bottom row). In this example, sample and reference
speckle patterns have equal power, maximizing the contrast of the hetero-
dyne interference term (bottom right, purple text).
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much lower than that of reference MMF speckle pattern.
Therefore, the term in Eq. (4) most relevant to sample dynamics
is the heterodyne term:

PAC,p � 2Re

�X
m
T p,m · A�

S,m

�
, (5)

where T p,m is a transmission coefficient, given by

T p,m �
Z Z

p

X
n

AR,nΨ�
m�x, y� ·Ψn�x, y�dxdy: (6)

If the MMF interference pattern (Fig. 1) is detected by a sensor
array, the collection of measured heterodyne signals is given by

PAC � 2RefT × A�
Sg, (7)

where PAC is a vector representing the heterodyne signals of P
sensor elements, T is the P ×M multimode interference transmis-
sion matrix (MMITM) with elements T p,m, and A�

S is another
vector related to the complex amplitudes of the M excited modes
in the sample MMF.

Here, assuming that the sample MMF collects diffuse light
emerging from a dynamic scattering medium, each core mode
excited in the sample MMF would carry a temporal speckle
(i.e., independent instance of the light field fluctuation). A�

S in
Eq. (7) can then be generalized as a delay time �td �-dependent
vector A�

S �td �, where each element is a time series, A�
S,m�td �, that

describes the fluctuations of one independent sample mode.
Although the MMITM [T of Eq. (7)] depends on the complex
amplitudes, AR,n, of excited reference modes, the MMITM is
time independent if the reference arm MMF is static and the spa-
tial profile and polarization of the input light are constant. Thus,
based on Eq. (7), dynamics in A�

S �td � induce temporal fluctua-
tions in the observable heterodyne signal, PAC�td �, via the
MMITM T. Three important points must be made here:
1. The heterodyne signals, PAC�td �, “reorganize” the sample
mode fields through a weighted complex sum. 2. Although these
heterodyne signals include only the component of the sample
field oscillating in-phase with the reference field [due to taking
the real part in Eq. (7)], accurate field autocorrelations can be
still be determined (see Section S1 in Supplement 1). 3. The
heterodyne signals of individual sensor elements, PAC,p�td �,
achieve a speckle contrast of

p
2 (half speckle) [25], as they

include the in-phase component. Hence, our heterodyne method,
based on detecting a MMF interference pattern with a sensor
array, theoretically achieves high-throughput, multispeckle detec-
tion of dynamically scattered light. As we will show in the next
two sections, performance depends on two key parameters:
signal-to-additive-noise ratio (SANR) and speckle number.

2. Mutual Coherence Degree and Signal-to-Additive-Noise
Ratio

MCD can be defined as the normalized temporal or/and spatial
correlation between two light fields [22]. For the dynamic multi-
mode interference between a static polarized reference field and a
fluctuating randomly polarized sample field, instantaneous MCD
can vary between 0 and 1, from location to location across the
multimode interference pattern. For a sensor array, we define
the time- and sensor-element-averaged MCD between the two
fields as

γSR �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����� RR E�
S �x,y,td � · ER�x, y�dxdy

��2�
p

��
���RR jES�x, y, td �j2dxdy

�
p

���RR jER�x, y�j2dxdy
�
p

vuut ,

(8)

where ES�x, y, td � and ER�x, y� are given by Eqs. (2) and (3),
respectively, single brackets with subscript p indicate sensor
element averaging, and double brackets indicate temporal averag-
ing. The two terms in the denominator of Eq. (8) are time- and
sensor-element-averaged powers of the sample (PS) and reference
(PR) MMF speckle patterns.

In heterodyne detection, the dominant noise source is ideally
shot noise in the reference photon number, which follows a
Poisson distribution with equal mean and variance [26]. Thus,
with increasing reference power, a limit is achieved where both
mean-squared heterodyne signal and noise variance increase in
proportion [Eq. (4)]. Shot-noise-limited performance of iDWS
is verified in Section S7 of Supplement 1. Thus, it is reasonable
to define SANR as

SANR �
����

2Re
	RR

E�
S �x,y,td � · ER�x, y�dxdy


�
2
�
p

��
�RR jER�x, y�j2dxdy

�
p · E∕te

, (9)

where te is the exposure time and E is the photon energy. SANR is
simply the ratio of the mean-squared heterodyne signal to
the reference power, PR , multiplied by a constant. SinceRR

E�
S �x, y, td � · ER�x, y�dxdy for each sensor element is a com-

plex, circularly symmetric, zero-mean, Gaussian random variable,
the statistics of the real and imaginary parts are identical. Thus,
Eq. (9) can be rewritten as

SANR �
2
����� RR E�

S �x,y,td � · ER�x, y�dxdy
��2�

p

��
�RR jER�x, y�j2dxdy

�
p · E∕te

� 2γ2SRN S:

(10)

Thus, SANR depends only on the time- and sensor-element-
averaged sample photon number, NS � PSte∕E , and MCD, γSR .

An analogy can be made between our MMITM and the con-
ventional mode transfer matrix of a MMF. Thus, squared singular
values, λ2i , of the matrix, �RefTg, ImfTg� [27], are analogous to
transmission coefficients of “eigenchannels,” each mapping a
linear combination of sample modes to a linear combination
of sensor array elements [28–30]. The sum of the squared singular
values is directly proportional to the sum of the squared hetero-
dyne signals detected from all sensor elements. The SANR can
thus be extracted directly from the MMITM,

SANR �
2NS

�P
i
λ2i


te

MNRE
, (11)

where M is the excited sample mode number and NR is the
sensor-element-averaged reference photon number. SANRs esti-
mated from simulations (with digitization) and Eq. (10) and
determined directly from MMITMs [Eq. (11)] are compared
in Section 3.A.1.

3. Speckle Number

Assuming that the diffuse light emerging from a scattering
medium equally excites M modes in the sample MMF, the sam-
ple light field ES can yield at most M speckles (M∕2 each in
in-phase and quadrature channels). From Eq. (7), the M speckles
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carried by theM excited sample modes, A�
S �td �, are mapped into

P heterodyne signals, PAC�td �, through the MMITM, T.
P real-valued measurements yield, at most, P∕2 speckles if they
are independent. In general, the effective speckle number,
N Speckle, in the P heterodyne signals, given in units of photon
number [i.e., NAC�td � � PAC�td �te∕E ], is

N Speckle �

2
664
mean

�P
p
N2

AC, p

�

std

�P
p
N2

AC, p

�
3
775
2

�

�P
i
λ2i

�
2

2
P
i
λ4i

: (12)

The first expression for speckle number in Eq. (12) is the recip-
rocal of squared speckle contrast of the sum of N2

AC, p.
Alternatively, the second expression for speckle number [28–30]
in Eq. (12) employs squared singular values, λ2i , [27]. The factor
of 2 in the denominator accounts for the reduction in speckle
number due to exclusion of the quadrature field component.
Speckle numbers estimated from simulations (with digitization)
and determined directly from MMTIMs [Eq. (12)] are compared
in Section 3.A.2.

4. Detector Number in Multimode Interferometry

Here, we describe the inherent performance limitations of
heterodyne interferometry with a single detector. Consider first
a MMF interferometer supporting M � MMMF core modes.
With a single detector element, the sample photon number,
NS,MMF, for the MMF is MMMF∕2 times higher than NS,SMF

for a SMF (which supports two perpendicularly polarized funda-
mental modes). However, while γ2SR is theoretically 1/2 between
randomly polarized sample light and polarized reference light for
the SMF [31], γ2SR is 1∕MMMF for the MMF with a single de-
tector. According to Eq. (10), the SANR is 2NS,MMF∕MMMF �
NS,SMF for both the MMF and SMF. Furthermore, regardless of
mode number, a single in-phase heterodyne measurement always
yields half a speckle. Thus, a MMF collector with a single detector
enhances neither SANR nor speckle number. The former effect is
caused by the tradeoff between light collection and MCD
[Eq. (10)], and the latter effect is caused by coherent superposition
in heterodyne detection. However, with P > 1 sensor elements,
both SANR and speckle number can be improved, per Eqs. (11)
and (12), respectively. In theory, detecting all available speckles with
optimal SANR requires P ≥ 2M sensor elements. Therefore, both
SANR and speckle number can be enhanced by combining aMMF
with a sensor array. The intuitive result that as many sensor ele-
ments as channels are needed to capture the information content
of a speckle pattern is in line with prior work on homodyne
speckle [23,24,32]. Moreover, as will be shown below, the spatial
arrangement of sensor elements, encapsulated in the MMITM, is
critical in determining the achievable performance improvement.

B. Multimode iDWS Design

Figure 2(a) shows the experimental multimode interferometric
multispeckle detection system (i.e., multimode iDWS) for meas-
uring coherent light-scattering dynamics. Long coherence length
light at 852 nm from a distributed Bragg reflector (DBR) laser
(D2-100-DBR-852-HP1, Vescent Photonics) is split into sample
and reference arms of the M-Z interferometer by a fused SMF-28
fiber coupler. The collimated 50 mW sample beam with a spot
size of 4 mm (below the American National Standards Institute

maximum permissible exposure of 4 mW∕mm2 ) is used for ir-
radiating turbid media (e.g., human brain tissue). Diffusively re-
flected light from the sample is collected by a MMF at a distance ρ
away (with a detection spot size of<1.5 mm ) and combined with
the reference light in a fiber-optic beam splitter (i.e., beam split-
ter-based MMF coupler, FOBS-22P-1111-105/125-MMMM-
850-95/5-35-3A3A3A3A-3-1-NA=0.15, OZ Optics). The MMF
coupler output is detected by a line-scan CMOS camera (spL4096-
140km, Basler) with a 333 kHz line rate for 512 horizontal pixels,

Fig. 2. (a) Schematic of multimode iDWS system based on an M-Z
interferometer built from two fiber couplers. The first SMF-28 fiber cou-
pler supports the first six vectorial modes (HE11 × 2, TE01, HE21 × 2,
and TM01) at 852 nm. In the reference arm, the SMF-28 output fiber
connects to the MMF coupler via an APC mating sleeve, with a variable
attenuator to avoid camera saturation. The splitting ratio of the MMF
coupler is 95/5 (T/R). The core and cladding diameters of the step-index
MMF are 105 μm and 125 μm, respectively, and the NA is 0.15. The
light source is an 852 nm DBR (distributed Bragg reflector) laser with
<1 MHz linewidth and >180 mW output power, modulated by a
500 mA LC (laser controller, D2-105-500, Vescent Photonics) with a
PS (power supply, D2-005, Vescent Photonics). L1 and L2: spherical
lens; CL1 and CL2: cylindrical lens; PC: personal computer. (b) The
intensity pattern at the MMF coupler output is detected by a 512 pixel
CMOS array. Pixels are binned horizontally to form N Pixel binned pixels
consisting of 512∕N Pixel pixels each, with fractional heights of aSlit.
(c) Instantaneous power measured by the pixel array with N Pixel �
512 and aSlit � 1. (d) Segments of heterodyne signal time courses
(∼1 ms) extracted from the three pixels marked by vertical dashed lines
in (c). (e) Normalized field autocorrelations calculated from full-time
courses (∼100 ms) of the three heterodyne signals in (d).
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vertical pixel binning, and 4-tap/12-bit data acquisition. A set of
cylindrical lenses projects the MMF output speckle pattern, with
a diameter of 105 μm, onto the 512 by 2 camera pixel array with
dimensions of 5120 by 20 μm (10 × 10 μm pixels).

As shown in simulations in Fig. 2(b), since a quasi-1D camera
measures a 2D interference pattern, each pixel detects the power
over a vertical rectangular region of a speckle pattern. The instan-
taneous power is shown in Fig. 2(c), with 512 pixels measuring
the entire interference pattern (i.e., N Pixel � 512, aSlit � 1.
Mean-subtracted power time courses yield heterodyne signals
for each pixel. Thus, 512 pixels yield 512 heterodyne signals
to estimate 512 field autocorrelations that contain information
about sample dynamics. The correlation of these signals is inves-
tigated in Section 3.A.1. Based on the theoretical analysis in
Section 2.A.4, we know that only an area-scan camera can pos-
sibly maximize the MCD and speckle number of multimode
heterodyne signals. However, for in vivo monitoring of blood
flow, a line-scan camera with a fast line rate (>100 kHz), man-
ageable data volume, and low cost is chosen for the initial multi-
mode iDWS system. Due to the mismatch between the 2D
multimode interference pattern and quasi-1D sensor array, opti-
mal SANR and speckle number cannot be achieved from the
heterodyne signals,NAC�td �. Yet, relative to a single detector, sen-
sor arrays improve achievable SANR and speckle number consid-
erably. Given our practical sensor array choice, we next investigate
the impact of three parameters: horizontal binned pixel number,
N Pixel, vertical fractional slit height, aSlit, and excited reference
mode number, NMode, on the performance of our multimode
iDWS system.

3. RESULTS AND DISCUSSION

A. Simulations

Simulations are performed to investigate the effects of three
parameters, N Pixel, aSlit, and NMode, on SANR and speckle num-
ber, and to optimize all parameters in the experimental setup
(Fig. 2). 1. SANRs are estimated from statistical simulations of
noise-added and digitized heterodyne signals using Eq. (10)
and realistic photon numbers, and speckle numbers are estimated

from statistical simulations of digitized heterodyne signals with-
out additive noise using Eq. (12) (see simulated signals with and
without additive noise in Visualization 1); 2. SANRs and speckle
numbers are directly calculated from the MMITMs using
Eqs. (11) and (12), respectively. Section S3 of Supplement 1 de-
scribes MMITM computation, statistical simulation, and other
data processing in more detail.

1. Horizontal Pixel Binning

Due to correlations between adjacent camera pixels, horizontal
pixel binning, or coherent summation, may improve heterodyne
signal. To investigate the impact of horizontal pixel binning on
SANR and speckle number, based on the methods described in
Section S3 of Supplement 1, we generated 20 independent noise-
added heterodyne signal time series, NAC,N �td �, where subscript
“N” denotes noise, for each of four MMITMs with reference
mode numbers, NMode, of 1702, 1300, 900, and 500. We then
estimated field autocorrelations for 10 different binned pixel
numbers, N Pixel, ranging from 512 to 1. For the simulations
in this section, we set aSlit to 1. Exemplary normalized field au-
tocorrelations with NMode of 1702 are shown in Fig. 3(a) for
different values of N Pixel, with corresponding exponential fits.
The field autocorrelation noise appears to be minimized for
N Pixel ∼ 32–64. The minimum root mean-squared error (RMSE)
for the fitted decay rate, estimated from 20 independent simula-
tions, appears at N Pixel ∼ 64 for all reference mode numbers
[Fig. 3(b)]. Figure 3(c) shows SANRs, either estimated from sim-
ulating and fitting G1�τd � [i.e., A∕B from Eq. (S7)] or calculated
from MMITMs by Eq. (11), for different NMode and N Pixel.
Figure 3(d) shows speckle numbers, either estimated from
simulations or calculated from MMITMs by Eq. (12). The
slightly lower simulated SANRs and slightly higher simulated
speckle numbers are the result of digitization in the simulation,
which reduces heterodyne fluctuation amplitude [see panel (e) of
Visualization 1].

Figures 3(c) and 3(d) clearly shows that horizontal pixel bin-
ning incurs a tradeoff between SANR and speckle number. To
explain why N Pixel � 64 is optimal, we first note that the im-
provement in SANR from horizontal binning deviates from

Fig. 3. Optimization of horizontal pixel binning. (a) Simulated g1�τd � for N Pixel ranging from 512 to 1 with aSlit � 1 and NMode � 1702, where total
sample and reference photon numbers detected by the 512 camera pixels are set as ∼41 and ∼4.1 × 106 per 3 μs exposure, respectively. (b) RMSE of decay
rates versus N Pixel for NMode of 1702, 1300, 900, and 500, estimated from 20 independent sets of simulations each. (c) SANR versus N Pixel estimated
from simulations with digitization (open symbols) and calculated from the corresponding MMITMs (solid lines). (d) Speckle number versus N Pixel

estimated from simulations with digitization (open symbols) and calculated from the corresponding MMITMs (solid lines). Red dashed curves in
(c) and (d) indicate theoretical SANR for binning of fully correlated pixels and theoretical speckle number for binning of uncorrelated pixels, respectively.
The optimal N Pixel of 64 is indicated by vertical dotted lines in (b), (c), and (d).
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the theoretical improvement for fully correlated pixels [red dashed
curve in Fig. 3(c)] for N Pixel ≲ 64. It can be inferred that the
heterodyne signals of ∼8 adjacent pixels remain highly correlated,
so that binning over <8 pixels performs coherent summing for
signal enhancement relative to noise. However, binning over
>8 adjacent pixels results in summing partially correlated (and
eventually, uncorrelated) pixels, resulting in less signal enhance-
ment relative to noise. A similar conclusion can be also inferred
from Fig. 3(d), where the speckle numbers drop for N Pixel ≲ 64,
also due to partially correlated (and eventually, uncorrelated) pixel
binning. Finally, although 1702 “speckle” channels corresponding
to 1702 sample modes are theoretically available, the maximal
speckle number is ∼23 in Fig. 3(d). This occurs because each
pixel covers multiple potential “speckle” channels in the vertical
direction [Fig. 2(b)], resulting in a loss of dimensionality, as a 2D
pattern is measured by a quasi-1D sensor array.

From Eq. (10), SANR is determined by the interplay between
γ2SR and NS . To investigate further, we estimated γ2SR and SANRs
while varying N Pixel via Eqs. (8) and (10), respectively. Here, we
generated 400 random sample MMF patterns with 1702 modes,
and four fixed reference MMF patterns with NMode of 1702,
1300, 900, and 500. The simulated γSR distributions (based
on a single sample pattern), shown in Figs. 4(a) and 4(b), clearly
show enhanced coherence with reduced binning (smaller pixels).
All γSR distributions are stretched to the same horizontal scale. In
Fig. 4(c), as pixel size increases, sample photon number per pixel,
NS , increases, but MCD, γ2SR , decreases. The aforementioned

tradeoff between γ2SR and NS as N Pixel varies leads to SANRs
[Eq. (10)] shown in Fig. 4(d), which agree with Fig. 3(c).

2. Vertical Slit Height

Lost MMF “speckle” channels, caused by experimental losses, also
increase coherence. This may offset the accompanying reduction
in detected sample photons. To understand how experimental
losses affect performance, we investigated the impact of vertical
slit height on SANR and speckle number. For the simulations
in this section, we set N Pixel to its optimal value of 64. We created
12 random MMITMs based on normalized vertical slit heights,
aSlit, ranging from 1 to 0.02, for each of four reference mode
numbers. We generated 20 independent noise-added heterodyne
signal time series, NAC,N �td �, for each MMITM. Exemplary nor-
malized field autocorrelations for NMode of 1702 and selected aSlit
values are shown in Fig. 5(a), with corresponding exponential fits.
The field autocorrelation noise is noticeably worse for smaller aSlit
values. RMSEs for the fitted decay rates, estimated from 20 in-
dependent simulations, rise for aSlit < 0.2 [Fig. 5(b)]. Figure 5(c)
shows SANRs, either estimated from simulating and fitting
G1�τd � [i.e., A∕B from Eq. (S7)] or calculated from MMITMs
by Eq. (11), for different NMode and aSlit. Figure 5(d) shows
speckle numbers, either estimated from simulations or calculated
fromMMITMs by Eq. (12). As in Figs. 3(c) and 3(d), the slightly
lower simulated SANRs and slightly higher simulated speckle
numbers are caused by reduced heterodyne fluctuation amplitude
due to digitization.

Figures 5(c) and 5(d) clearly show that SANR and speckle
number remain roughly constant for 0.2 ≲ aSlit ≤ 1, and rapidly
decline for aSlit ≲ 0.2. To explain this behavior in terms of the
tradeoff between mutual coherence and pixel photon number
[Eq. (10)], we again performed simulations on 400 random sam-
ple MMF patterns with 1702 modes, and four fixed reference
MMF patterns. The tradeoffs between γ2SR and NS , incurred
by changing aSlit, are investigated for the optimal N Pixel of 64.
The simulated γSR distributions, shown in Figs. 6(a) and 6(b),
indicate coherence enhancement with decreasing aSlit, with γSR
approaching its maximum theoretical value of 0.707 [dotted
red line in Fig. 6(c)]. The aforementioned tradeoff between
γ2SR and NS as aSlit varies leads to SANRs [Eq. (10)] shown in
Fig. 6(d), which agree with Fig. 5(c).

Since the transformation aSlit � 1∕N Pixel and N Pixel � 1∕aSlit
does not change binned pixel size, the connection between pixel
binning and vertical slit results merits further comment. Regardless
of aSlit and NMode, SANRs begin to decrease for N Pixel > 4
(Fig. S2), and speckle numbers deviate from theory for uncorre-
lated pixels for N Pixel > 4 (Fig. S3). Thus adjacent binned pixels
are partially correlated forN Pixel > 4. If the multimode interference
pattern had been measured by a 512 × 512 pixel 2D array, vertical
pixel binning over every ∼102 pixels would yield ∼5 binned
pixels in the vertical direction, where the central horizontal line
of binned pixels corresponds to an aSlit of 0.2 (i.e., 102/512).
However, by the argument above, any further reduction in slit
height would result in a loss of partially correlated fluctuations,
explaining the loss of SANR for aSlit < 0.2 [Fig. 5(c)].

3. Summary

The simulations provide several helpful guidelines for system
design and optimization. First, since adjacent pixels in the line-
scan camera measure similar combinations of “speckle” channels,

Fig. 4. Tradeoff between coherence and pixel photon number incurred
by binning. Distributions of instantaneous, local MCD values, γSR
[Eq. (8) without time- or sensor-element-averaging], across pixels for dif-
ferent amounts of binning (N Pixel), with aSlit � 1 and 1702 random sam-
ple modes interfering with a fixed reference MMF pattern of either 1702
(a) or 500 (b) modes. (c) NS and simulated γSR versus N Pixel based on
400 random sample MMF patterns, with different NMode (open sym-
bols). (d) SANRs calculated based on Eq. (10) from γSR and NS shown
in (c) (open symbols). Corresponding SANRs calculated fromMMITMs
are shown as solid lines in (c) and (d) for comparison.
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their heterodyne signals are correlated, and horizontal pixel bin-
ning over 8 camera pixels improves SANR without degrading
speckle number. Accordingly, γSR is enhanced from ∼0.024
[i.e., �1∕1702�1∕2] for N Pixel�1 to ∼0.127 for N Pixel � 64
[Fig. 4(c)]. Experimental results (Fig. S4) confirmed that

N Pixel � 64 yielded the lowest noise autocorrelation estimates,
and that there is a tradeoff between SANR and speckle number
as N Pixel is varied, as predicted by simulations. More specifically,
experiments confirmed that N Speckle ≈ 20 was achieved for
N Pixel � 64 [Fig. S4(m)]. Second, a vertical slit with a fractional
height of 0.2 can be applied to the MMF interferometer output
without appreciably degrading SANR or speckle number, while
slit fractional heights of ≲0.2 degrade both. This confirms that
detection of all light by the line-scan camera is not essential,
and aberrations in our setup should not significantly degrade per-
formance. Third, reference mode number does not play a major
role in speckle number or SANR (see simulations for different
NMode in Section S4 of Supplement 1). Thus, we conclude that
excitation of every reference core mode is not required in our
experimental setup.

B. Experiments

1. Phantom Measurements

For experimental validation of the multimode iDWS system (see
Section S6 in Supplement 1), measurements of Brownian motion
were performed for S-D separations ρ from 1 cm to 4 cm. The
liquid phantom was made of Intralipid-20% (Fresenius Kabi,
Uppsala, Sweden) diluted with water, providing reduced scatter-
ing μ 0

s of 6.0 cm−1 and absorption μa of 0.05 cm−1 (water) at
852 nm. For phantom measurements, both source and detector
fibers were directly inserted ∼1 mm below the liquid surface.
Based on the experimental setup in Fig. 2(a), the dynamic inter-
ference pattern for each S-D separation was recorded for 1 s.
Then, N Pixel individual autocorrelation estimates, from mean-
subtracted temporal fluctuations of N Pixel binned pixels, were
summed to yield the field autocorrelation estimate, G1�τd , ρ�,
which was then fitted with a modified DCS model (see
Section S5 in Supplement 1). Normalized field autocorrelations,
g1�τd , ρ�, for different S-D separations (at an optimized N Pixel of
64) are shown in Fig. 7(a) (see experimental confirmation of op-
timal pixel binning in Section S6 of Supplement 1). The corre-
sponding Brownian diffusion coefficients, DB , of the liquid
phantom, estimated by fitting G1�τd , ρ�, are shown in Fig. 7(b).

Fig. 5. Optimization of fractional vertical slit height. (a) Simulated g1�τd � for different aSlit with N Pixel � 64 and NMode � 1702, where total sample
and reference photon numbers detected by the 512 camera pixels are set as ∼41 and ∼4.1 × 106 per 3 μs exposure for aSlit � 1, respectively. (b) RMSE of
decay rates versus aSlit for NMode of 1702, 1300, 900, and 500, estimated from 20 independent sets of simulations each. (c) SANR versus aSlit estimated
from simulations with digitization (open symbols) and calculated from the corresponding MMITMs (solid lines). (d) Speckle number versus aSlit esti-
mated from simulations with digitization (open symbols) and calculated from the corresponding MMITMs (solid lines). Vertical dotted lines in (b), (c),
and (d) mark an aSlit threshold of 0.2, above which minimal changes in SANR and speckle number are observed.

Fig. 6. Tradeoff between coherence and pixel photon number incurred
by changing slit height. Distributions of instantaneous, local MCD
values, γSR , across pixels for different aSlit, with N Pixel � 64 and 1702
random sample modes interfering with a fixed reference MMF pattern
of either 1702 (a) or 500 (b) modes. (c) NS and simulated γSR versus aSlit
based on 400 random sample MMF patterns, with different numbers of
reference modes NMode (open symbols). (d) SANRs calculated based on
Eq. (10) from γSR and NS shown in (c) (open symbols). Corresponding
SANRs calculated from MMITMs are shown as solid lines in (c) and
(d) for comparison.
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Across a wide range of S-D separations, the estimated DB remains
around 1.25 × 10−8 cm2∕s. Our results are in agreement with the
previously reported DB value of 1.07 × 10−8 cm2∕s for Intralipid
at ∼18.5°C, estimated by conventional DCS [33], given our
slightly higher temperature of 21°C and possible errors in optical
properties.

For further validation of iDWS system, temperature depend-
ence of Brownian motion in an Intralipid phantom was also
investigated. The phantom was passively heated with an average
rate of <0.14°C∕min to avoid convection effects. With an S-D

separation of 2.5 cm, the dynamic interference pattern was
recorded for 1 s for every 0.1°C increase in temperature, as
monitored by a thermometer (TMD-56, Amprobe). The temper-
ature-dependent DB was extracted from fitting the summed field
autocorrelations, G1�τd � (N Pixel � 64), with Eq. (S8). The
evolution of the normalized field autocorrelation, g1�τd �, for tem-
peratures from 7°C to 19°C is shown in Fig. 7(c), where a decreased
decay time, τc [g1�τc� � 1∕e], indicates increased Brownian
motion. Figure 7(d) shows DB determined from Eq. (S8), in
two independent experiments, as well as the fit of the Einstein–
Stokes equation, assuming the temperature dependence of water
viscosity [33,34]. An average Intralipid particle radius of 171.8	
0.4 nm is estimated, in agreement with the previously reported
value of 196 nm [33]. The robustness of iDWS to ambient light
is demonstrated in Fig. S6 at an S-D separation of 4.1 cm in the
same Intralipid phantom (see Section S8 in Supplement 1).

2. In vivo Measurements

Taking advantage of the parallel multispeckle detection of our
iDWS system, we monitored high-speed pulsatile blood flow dy-
namics in the human brain in vivo [18,19,34,35]. A healthy adult
human subject sat on a chair with her head placed on a chin rest.
Non-contact source and detector fibers were aimed at the subject’s
forehead over the prefrontal cortex with an S-D separation of
2.5 cm, which provides sensitivity to brain blood flow with some
superficial contamination in DCS [36]. All experimental proce-
dures and protocols were reviewed and approved by the UC Davis
Institutional Review Board (IRB), and safety precautions were
implemented to avoid accidental eye exposure. A commercial fin-
gertip pulse oximeter (SM-165, Santa Medical) for monitoring
the heart rate was placed on the subject’s index finger. With
the experimental setup of Fig. 2(a), the dynamic interference pat-
tern was continuously recorded by the line-scan camera for 30 s.
Then, summed field autocorrelations, G1�τd , ρ�, were estimated,
with an integration time, t int, of 0.1 s and a sampling rate of
20 Hz (overlapping sampling window), from the mean-subtracted
temporal fluctuations of the N Pixel � 64 binned pixels. The
blood flow indices (BFIs) were determined by fitting the mea-
sured field autocorrelations with Eq. (S8). Typical optical proper-
ties of μ 0

s � 7.38 cm−1 and μa � 0.12 cm−1 [35] were assumed
for brain tissue. The estimated BFI time course in Fig. 7(e) clearly
reveals the pulsatile nature of the blood flow. Although recovered
absolute BFI values are impacted by assumptions about optical
properties (particularly scattering) BFI fluctuations track pulsatile
flow in deep tissue in vivo [33]. Cardiac rate is confirmed from the
fast Fourier transform (FFT) of the BFI fluctuations [Fig. 7(e) left
inset], where the peak at ∼1.2 Hz indicates a heart rate of
∼72 bpm, in agreement with the pulse oximeter. The repeatabil-
ity of iDWS was investigated by measurements in two subjects,
which yielded coefficients of variation of 4%–5% in half-minute
sessions (see Section S9 in Supplement 1).

It may seem surprising that interferometry, which is highly
sensitive to phase shifts caused by wavelength-scale motion, pro-
vides meaningful results with a non-contact measurement in vivo.
However, our method requires phase stability only on the time
scale of the intrinsic field decorrelation due to blood flow, which
is a hundred microseconds for the measurements performed here.
Changes in light coupling or in the probed tissue volume due to
motion may also impact our results. In particular, the non-
uniform pulsatile BFI peaks [Fig. 7(e)] could be caused by

Fig. 7. Multimode iDWS in experimental phantoms and in vivo.
(a) Normalized field autocorrelations, g1�τd , ρ�, of an Intralipid phantom
at different S-D separations (symbols). Corresponding exponential fits
are indicated by solid lines. (b) Diffusion coefficient (DB) values esti-
mated by fitting G1�τd , ρ� are independent of ρ. Error bars indicate
95% confidence intervals of DB estimates. (c) Evolution of g1�τd � from
7°C to 19°C at an S-D separation of 2.5 cm. The decay time of g1�τd �, τc ,
is indicated by black line. (d) Temperature-dependent diffusion coeffi-
cients, DB , were estimated by fitting G1�τd � in two independent experi-
ments. Shaded regions indicate 95% confidence intervals of DB
estimates. The black line is the fit of the Einstein–Stokes equation.
(e) In vivo pulsatile blood flow index (BFI) measured from the human
brain with a 2.5 cm S-D separation. Shaded regions indicate 95% con-
fidence intervals of BFI estimates. The left inset of panel 7(e) shows the
FFT spectrum of the BFI fluctuations, where a heart rate of ∼1.2 Hz is
evident. The right inset shows field autocorrelations, g1�τd �, averaged
over four systolic maxima (red) and four diastolic minima (blue), respec-
tively, with corresponding fits. Integration times t int for estimating
G1�τd � are 1 s and 0.1 s for the phantom and in vivo experiments,
respectively. N Pixel is 64 for all experiments.
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phase noise due to forehead motion. Finally, though we used non-
contact iDWS for in vivo human brain measurements, contact
iDWS measurements are also possible in vivo (see Section S10
in Supplement 1).

4. CONCLUSION

A novel MMF-based iDWS employing a CMOS line-scan camera
is proposed and experimentally demonstrated. Unlike conven-
tional heterodyne methods that employ a single detector, this sys-
tem benefits from both MMF light throughput and multispeckle
detection. We describe the iDWS system with a MMITM, built
from vectorial modes of the MMF. We introduce SANR and
speckle number, two key system parameters, and then use the
MMITM to investigate the effect of horizontal pixel binning,
vertical slit width, and reference mode number on system perfor-
mance. We show that iDWS can measure Brownian motion in
liquid phantoms at up to 4.1 cm S-D separation, and pulsatile
blood flow in the human brain at 2.5 cm S-D separation. In
the future, speckle number and S-D separation can be further
enhanced in iDWS by larger core MMF or free-space collection,
as well as detection by an area scan camera. By contrast, in con-
ventional DCS, many SMF or FMF channels with costly single-
photon-counting detectors are needed to improve performance.

More broadly, our work links the fields of DWS and DCS,
which have relied on single photon counting detectors, to
CMOS camera technology, which is rapidly advancing due to
mobile phone and autonomous driving applications. Relative
to conventional DWS and DCS, our approach introduces novel
features, including sensitivity to optical phase, low cost, robust-
ness against ambient light, and the potential for massively parallel
multiple speckle detection without single-photon counting. The
heterodyne interferometric approach thus represents an advance
in diffuse optical sensing of tissue blood flow.
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