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Abstract: Visible light optical coherence tomography (OCT) theoretically provides finer 
axial resolution than near-infrared OCT for a given wavelength bandwidth. To realize this 
potential in the human retina in vivo, the unique technical challenges of visible light OCT 
must be addressed. We introduce three advances to further the performance of visible light 
OCT in the human retina. First, we incorporate a grating light valve spatial light modulator 
(GLV-SLM) spectral shaping stage to modify the source spectrum. This enables comfortable 
subject alignment with a red light spectrum, and image acquisition with a broad “white light” 
spectrum, shaped to minimize sidelobes. Second, we develop a novel, Fourier transform-free, 
software axial motion tracking algorithm with fast, magnetically actuated stage to maintain 
near-optimal axial resolution and sensitivity in the presence of eye motion. Third, we 
implement spatially dependent numerical dispersion compensation for the first time in the 
human eye in vivo. In vivo human retinal OCT images clearly show that the inner plexiform 
layer consists of 3 hyper-reflective bands and 2 hypo-reflective bands, corresponding with the 
standard anatomical division of the IPL. Wavelength-dependent images of the outer retina 
suggest that, beyond merely improving the axial resolution, shorter wavelength visible light 
may also provide unique advantages for visualizing Bruch’s membrane. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

While optical coherence tomography (OCT) is the clinical standard for high axial resolution 
imaging of retinal layers, important architectural features of the retina, which may play a role 
in early eye disease, cannot yet be assessed by current OCT instruments. 

First, in glaucoma [1], loss of retinal ganglion cells (RGCs) [2,3] occurs along with 
thinning of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform 
layer (IPL), reflecting axonal, somatic, and dendritic losses, respectively. While somatic 
(GCL) and axonal (RNFL) changes in glaucoma have been extensively studied with OCT, 
there are comparatively few studies on dendritic changes in human glaucoma [4]. The IPL is a 
layer of connections, where the dendrites of ganglion cells, axons of bipolar cells, and 
processes of amacrine cells converge to form 5 nominal bands or strata [5]. The IPL is also 
divided into on and off sublaminae [6–8], comprising the inner 3 and outer 2 bands, 
respectively. Recent fundamental research [9–12] in various animal models of optic nerve 
injury and hypertension [13] suggest that ganglion cell dendritic morphology changes early in 
glaucoma, and these changes may be most predictive in the off sublamina. However, aside 
from a few anecdotal reports [14,15], the in vivo visualization and quantification of IPL 
sublaminae remains challenging due to insufficient axial resolution. 

Second, in age-related macular degeneration (AMD) [16], the earliest signs of AMD are 
assumed to be similar to changes observed histopathologically in older eyes [17]; namely, 
diffuse thickening of Bruch’s membrane (BM) [17–19] and deposits in the retinal pigment 
epithelium (RPE) basal lamina [20], the latter of which is considered one of the five layers of 
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BM [21]. Discerning these two loci for deposits, in addition to a third subretinal locus for 
drusenoid deposits in the RPE [22], requires exquisite micron-level depth resolution. The 
ability to follow micron-scale disease processes in aging and early AMD in the human eye 
could lead to a better understanding of pathophysiology [23], and reveal new biomarkers for 
AMD progression [24]. However, even for high-end near infrared (NIR) OCT, direct 
observations of BM as distinct from the RPE in a morphologically normal retina are anecdotal 
[25–27]. 

Visible light OCT is an emerging technique that can perform structural and functional 
retinal imaging [28–37]. For a given wavelength bandwidth, visible light OCT improves axial 
image resolution compared to NIR OCT [38]. Recently ultrahigh axial resolution imaging 
was demonstrated with a fiber-based spectral / Fourier domain visible light OCT system with 
longitudinal chromatic aberration (LCA) correction [33], providing human retinal image 
quality that exceeded NIR OCT in some respects. Here, to further improve image quality, we 
incorporate a spectral shaping method to reduce sidelobes in the point spread function, to 
better assess subtle reflectance differences. In addition, we propose and implement a novel 
axial motion tracking algorithm to maintain optimal image sensitivity and resolution in the 
presence of eye motion. In contrast to previous algorithms [39–41], our method does not 
require a Fourier transform. We also implement spatially dependent dispersion compensation 
[42] in the in vivo human retina to for the first time. With these improvements, our human 
retinal images support the ability to clearly visualize the internal five-layered structure of the 
IPL and the hypo-reflective space between Bruch’s membrane and the Retinal Pigment 
Epithelium. Careful investigation of wavelength-dependent contrast in subband images 
suggests that beyond just improving the resolution, shorter visible OCT wavelengths provide 
key advantages for visualizing Bruch’s membrane. 

2. Method 

2.1 Visible light OCT system design for human imaging 

A fiber-based, LCA-corrected spectral / Fourier domain visible light OCT for human retinal 
imaging was built with a 156 MHz repetition rate, low noise, supercontinuum light source 
(NKT Photonics EXU3) as shown in the Fig. 1(A). To reduce axial point spread function 
(PSF) sidelobes and improve light safety margins, we developed a diffractive optical setup to 
rapidly shape the spectrum (red box). In addition, we developed a novel axial motion tracking 
algorithm, implemented in software, and incorporated a fast, magnetically actuated linear 
translation stage in the reference arm to compensate axial eye motion (blue box). The rest of 
the setup has been described previously [33,43]. Images from a single 38-year-old male 
subject are shown, though similar results were confirmed in three additional subjects. All 
procedures and protocols were approved by the UC Davis Institutional Review Board. 

2.2 Rapid spectral shaping 

In spectral / Fourier domain OCT, the system axial resolution is determined by the coherence 
length of the light source, proportional to the ratio of center wavelength squared to the 
wavelength bandwidth. For a modulated or truncated source spectrum, sidelobes in the axial 
PSF degrade the image contrast. Here, we propose a new method that utilizes a grating light 
valve spatial light modulator (GLV-SLM) to rapidly and precisely shape the supercontinuum 
source spectrum. 

The GLV-SLM (F1088, Silicon Light Machines, LLC) is a Micro-Electro-Mechanical 
Systems (MEMS) device with free-standing silicon nitride micro-ribbons attached to the 
surface of a silicon chip. The GLV-SLM has 1088 individual GLV pixels, with each pixel 
consisting of 3 ‘active’ ribbons and 3 ‘bias’ ribbons. The ‘active’ ribbons in a pixel are 
displaced, depending on the voltage applied to the pixel, to generate a square-well diffraction 
grating. The amplitude of reflected incident light is thus attenuated in that pixel. The update 
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Here, Ĝ1 represents the estimated spectral interference autocorrelation as a function of 
wavelength lag, which is estimated by averaging across interference spectra in an image 
frame. For simplicity, we assume that the spectral samples have a uniform spacing of Δλ. 
Conventional axial tracking requires resampling (~2N multiplies for linear interpolation), 
Fourier transformation (N/2 log N multiplies), and centroid calculation (N/2 multiplies), 
where N is the number of pixels on the camera. Our algorithm, as shown in Fig. 2(B), 
requires N multiplies for G1(0) estimation and N-1 multiplies for G1(Δλ) estimation 
(G1,noise(0) is estimated once at the beginning of the session and does not affect the tracking 
algorithm complexity). The shorter computation time results in reduced latency, which is 
essential for tracking. 

Qualitatively, we expect that larger path delays will cause faster oscillations in the spectral 
interferogram, Sint(λ), which leads to more decorrelation for a given Δλ. In the case uniform k 
(wavenumber) sampling (i.e., neglecting nonlinear sampling in k), we can derive a direct 
analytic expression for the spectral interference autocorrelation G1(k) in terms of the complex 
OCT signal s(z). First, G1(0) = Sint(k)S*

int(k)dk/2π = s(z)s*(z)dz = |s(z)|2dz is the integral of 
the power spectrum. Note that G1(0) is the energy in the interference spectrum, which is 
identical to the energy in the Fourier transform, by Parseval’s theorem [46]. Also, G1(Δk) = 
Sint(k + Δk)S*int(k)dk/2π = s(z)s*(z)e-i2Δkzdz = 20∞|s(z)|2cos(2Δkz)dz, since s(z) = s*(-z) by 
conjugate symmetry. Thus, for a single reflector located at z = z0, g1(Δk) = G1(Δk)/G1(0) = 
cos(2Δkz0). Note that in this simple example, if Δk is the sampling interval, g1(Δk) = 1 for z0 
= 0, g1(Δk) = 0 for z0 = π/4Δk (½ of the axial imaging range), and g1(Δk) = −1 for z0 = π/2Δk 
(the end of the axial imaging range). For uniform λ sampling (nonlinear sampling in k), 
g1(Δλ) is similarly expected to decrease monotonically with increasing path delay, as shown 
experimentally in Fig. 2(B). 

Our axial tracking algorithm is shown in Fig. 2(C). The computational simplicity results 
in reduced software latency, which is critical for good tracking performance. We incorporated 
a magnetically actuated stage (V-522, Physik Instrumente) with a maximum speed of 250 
mm/s and 0.32 ms mechanical latency in the reference arm to track axial eye motion. The 
noise threshold was determined as the estimated “background” level, Ĝ1,noise(0), multiplied by 
a constant, chosen empirically to avoid tracking during blinks while still tracking under low 
signal conditions. The input voltage was incremented proportional to g1(Δλ) - g1,t, where the 
constant of proportionality was empirically determined and g1,t ≈ 0.8. The axial motion 
tracking algorithm was written in a C language dynamically linked library, called by Labview 
software, and the voltage control was achieved by an analog output on the PCIe-DAQ (6353, 
National Instruments). 
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protocol to generate a single cross-sectional image. In this protocol, we acquire consecutive 
volumes displaced along the fast (x) axis, where each volume contains multiple frames along 
the slow (y) axis. The spacing between frames along the y axis should be sufficiently large to 
ensure independent speckle averaging, but sufficiently small to avoid significant variations in 
retinal morphology. Our protocol included 13 consecutive volumes, consisting of 20 frames 
with 168 axial scans each per volume (10 kHz axial scan rate), where each frame was spaced 
by 2.5 µm along the slow axis. The field-of-view is ~2.6 mm along the fast axis and ~50 µm 
along the slow axis. Standard image reconstruction [45] with spatially-dependent dispersion 
compensation [42] is applied to all images. Then, two successive motion corrections are 
applied to generate the whole cross-section image. First, we estimate (via cross-correlation) 
and correct the axial eye motion in each volume individually and average over the multiple 
frames in a volume. Next, the axial motion between volumes is corrected, and then all the 
volumes are combined to generate one cross-sectional image. 

3. Results 

3.1 Rapid spectral shaping and performance comparisons 

As shown in Fig. 3(A), our shaping setup enabled optimizing spectra for different tasks, such 
as ultrahigh resolution (UHR) imaging and alignment. The black curve is the original UHR 
spectrum from the light source. The yellow curve is the alignment spectrum (a Hamming 
function spectrum centered at 625 nm) for subject alignment to reduce bleaching, improve 
patient comfort, and reduce photochemical effects. The alignment spectrum reduces retinal 
luminous exposure by ~40% relative to the original spectrum with approximately equivalent 
power. Once aligned, the alignment spectrum is replaced by the shaped UHR imaging 
spectrum (orange curve) with 562.5 nm center wavelength and 110 nm full-width-at-half-
maximum (FWHM) bandwidth for image acquisition. 

To evaluate shaping, we compared the axial point spread functions (PSFs) of the original 
UHR spectrum and the shaped UHR spectrum (Fig. 3(B)). The original spectrum was 
attenuated to have the same power as the shaped spectrum (to approximately maintain 
sensitivity). The PSFs were calculated as the Fourier transform of the interference spectra 
between sample and reference mirrors and processed by conventional OCT processing (re-
sampling and dispersion compensation). The PSF acquired with the shaped spectrum 
demonstrates better sidelobe supression. 

To examine effects of shaping in vivo, human UHR retinal imaging was performed (Fig. 
3(C)). The left image was acquired with the shaped imaging spectrum, whereas the right 
image was acquired with the original spectrum. The original spectrum was attenuated to have 
the same power as the shaped imaging spectrum (to approximately maintain sensitivity), and 
the spectrum was switched during the acquisition (<10 microsecond switching time), ensuring 
near simultaneity. The middle figures are zooms of selected areas, showing reduced sidelobes 
in the shaped imaging spectrum image (orange box) compared to the original spectrum image 
(blue box). Importantly, when a digital post-processing method was applied instead to the 
original spectrum image to shape the spectrum, the reduction in sidelobes was accompanied 
by a 2 dB penalty in signal-to-noise ratio. 
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during acquisition, while still maintaining an acceptable margin of safety relative to thermal 
and photochemical hazards. Pending assessment of repeatability and reproducibility, visible 
light OCT imaging of the inner and outer retina may help to assess the earliest putative 
changes in both glaucoma and AMD. 

5. Conclusion 

In this work, several technical advances were implemented to improve the performance of 
visible light OCT in the human retina. Images revealed both inner plexiform layer lamination 
and a clear hypo-reflective space between Bruch's membrane (BM) and the retinal pigment 
epithelium (RPE). Spatially dependent dispersion compensation enabled precise investigation 
of wavelength-dependent contrast within individual subband images with identical axial 
resolution. The outer retinal contrast improved dramatically at shorter wavelengths, while the 
inner plexiform layer contrast showed no obvious improvement. These observations suggest 
that the IPL visualization is mainly improved by the axial resolution, whereas the 
improvement in BM visualization is further aided by the shorter visible wavelengths. 
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